These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 25546358)
1. Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Sicard C; Glen C; Aubie B; Wallace D; Jahanshahi-Anbuhi S; Pennings K; Daigger GT; Pelton R; Brennan JD; Filipe CD Water Res; 2015 Mar; 70():360-9. PubMed ID: 25546358 [TBL] [Abstract][Full Text] [Related]
2. Monitoring of fluoride in water samples using a smartphone. Levin S; Krishnan S; Rajkumar S; Halery N; Balkunde P Sci Total Environ; 2016 May; 551-552():101-7. PubMed ID: 26874766 [TBL] [Abstract][Full Text] [Related]
3. Deep learning-assisted ultra-accurate smartphone testing of paper-based colorimetric ELISA assays. Duan S; Cai T; Zhu J; Yang X; Lim EG; Huang K; Hoettges K; Zhang Q; Fu H; Guo Q; Liu X; Yang Z; Song P Anal Chim Acta; 2023 Apr; 1248():340868. PubMed ID: 36813452 [TBL] [Abstract][Full Text] [Related]
4. Optimal sensor placement for detecting organophosphate intrusions into water distribution systems. Ohar Z; Lahav O; Ostfeld A Water Res; 2015 Apr; 73():193-203. PubMed ID: 25662513 [TBL] [Abstract][Full Text] [Related]
5. Multimodal Imaging and Lighting Bias Correction for Improved μPAD-based Water Quality Monitoring via Smartphones. McCracken KE; Angus SV; Reynolds KA; Yoon JY Sci Rep; 2016 Jun; 6():27529. PubMed ID: 27283336 [TBL] [Abstract][Full Text] [Related]
6. Point-of-care colorimetric detection with a smartphone. Shen L; Hagen JA; Papautsky I Lab Chip; 2012 Nov; 12(21):4240-3. PubMed ID: 22996728 [TBL] [Abstract][Full Text] [Related]
7. Portable smartphone-based colorimetric system for simultaneous on-site microfluidic paper-based determination and mapping of phosphate, nitrite and silicate in coastal waters. Manbohi A; Ahmadi SH Environ Monit Assess; 2022 Feb; 194(3):190. PubMed ID: 35165783 [TBL] [Abstract][Full Text] [Related]
8. Fast pesticide detection inside microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence. Tahirbegi IB; Ehgartner J; Sulzer P; Zieger S; Kasjanow A; Paradiso M; Strobl M; Bouwes D; Mayr T Biosens Bioelectron; 2017 Feb; 88():188-195. PubMed ID: 27523821 [TBL] [Abstract][Full Text] [Related]
9. Creating fast flow channels in paper fluidic devices to control timing of sequential reactions. Jahanshahi-Anbuhi S; Chavan P; Sicard C; Leung V; Hossain SM; Pelton R; Brennan JD; Filipe CD Lab Chip; 2012 Dec; 12(23):5079-85. PubMed ID: 23079674 [TBL] [Abstract][Full Text] [Related]
11. Automated Water Analyser Computer Supported System (AWACSS) Part II: Intelligent, remote-controlled, cost-effective, on-line, water-monitoring measurement system. Tschmelak J; Proll G; Riedt J; Kaiser J; Kraemmer P; Bárzaga L; Wilkinson JS; Hua P; Hole JP; Nudd R; Jackson M; Abuknesha R; Barceló D; Rodriguez-Mozaz S; de Alda MJ; Sacher F; Stien J; Slobodník J; Oswald P; Kozmenko H; Korenková E; Tóthová L; Krascsenits Z; Gauglitz G Biosens Bioelectron; 2005 Feb; 20(8):1509-19. PubMed ID: 15626604 [TBL] [Abstract][Full Text] [Related]
12. Paper-Plastic Hybrid Microfluidic Device for Smartphone-Based Colorimetric Analysis of Urine. Jalal UM; Jin GJ; Shim JS Anal Chem; 2017 Dec; 89(24):13160-13166. PubMed ID: 29131592 [TBL] [Abstract][Full Text] [Related]
13. Non-enzymatic colorimetric detection of hydrogen peroxide using a μPAD coupled with a machine learning-based smartphone app. Doğan V; Yüzer E; Kılıç V; Şen M Analyst; 2021 Nov; 146(23):7336-7344. PubMed ID: 34766967 [TBL] [Abstract][Full Text] [Related]
14. Accessory-free quantitative smartphone imaging of colorimetric paper-based assays. Kong T; You JB; Zhang B; Nguyen B; Tarlan F; Jarvi K; Sinton D Lab Chip; 2019 Jun; 19(11):1991-1999. PubMed ID: 31044203 [TBL] [Abstract][Full Text] [Related]
15. Dual Chromatic Laser-Printed Microfluidic Paper-Based Analytical Device (μPAD) for the Detection of Atrazine in Water. Moulahoum H ACS Omega; 2023 Nov; 8(44):41194-41203. PubMed ID: 37970019 [TBL] [Abstract][Full Text] [Related]
16. Development of the smartphone-based colorimetry for multi-analyte sensing arrays. Hong JI; Chang BY Lab Chip; 2014 May; 14(10):1725-32. PubMed ID: 24671456 [TBL] [Abstract][Full Text] [Related]
17. A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (μPADs) using technical drawing pens and in-house formulated aqueous inks. Nuchtavorn N; Macka M Anal Chim Acta; 2016 May; 919():70-77. PubMed ID: 27086101 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous detection of multiple bioactive pollutants using a multiparametric biochip for water quality monitoring. Guijarro C; Fuchs K; Bohrn U; Stütz E; Wölfl S Biosens Bioelectron; 2015 Oct; 72():71-9. PubMed ID: 25957833 [TBL] [Abstract][Full Text] [Related]
19. Quantitative point-of-care (POC) assays using measurements of time as the readout: a new type of readout for mHealth. Lewis GG; Phillips ST Methods Mol Biol; 2015; 1256():213-29. PubMed ID: 25626542 [TBL] [Abstract][Full Text] [Related]
20. Investigating the presence of pesticide transformation products in water by using liquid chromatography-mass spectrometry with different mass analyzers. Hernández F; Ibáñez M; Pozo OJ; Sancho JV J Mass Spectrom; 2008 Feb; 43(2):173-84. PubMed ID: 17724783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]