BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25546441)

  • 21. Energetics and stability of transmembrane helix packing: a replica-exchange simulation with a knowledge-based membrane potential.
    Chen Z; Xu Y
    Proteins; 2006 Feb; 62(2):539-52. PubMed ID: 16299775
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of buried helices in multispan alpha helical membrane proteins.
    Adamian L; Liang J
    Proteins; 2006 Apr; 63(1):1-5. PubMed ID: 16419070
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of the human membrane proteome.
    Fagerberg L; Jonasson K; von Heijne G; Uhlén M; Berglund L
    Proteomics; 2010 Mar; 10(6):1141-9. PubMed ID: 20175080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energetics, stability, and prediction of transmembrane helices.
    Jayasinghe S; Hristova K; White SH
    J Mol Biol; 2001 Oct; 312(5):927-34. PubMed ID: 11580239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lipid exposure prediction enhances the inference of rotational angles of transmembrane helices.
    Lai JS; Cheng CW; Lo A; Sung TY; Hsu WL
    BMC Bioinformatics; 2013 Oct; 14():304. PubMed ID: 24112406
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimating the length of transmembrane helices using Z-coordinate predictions.
    Papaloukas C; Granseth E; Viklund H; Elofsson A
    Protein Sci; 2008 Feb; 17(2):271-8. PubMed ID: 18096645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of amphipathic in-plane membrane anchors in monotopic proteins using a SVM classifier.
    Sapay N; Guermeur Y; Deléage G
    BMC Bioinformatics; 2006 May; 7():255. PubMed ID: 16704727
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural determinants of transmembrane helical proteins.
    Harrington SE; Ben-Tal N
    Structure; 2009 Aug; 17(8):1092-103. PubMed ID: 19679087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PRIMSIPLR: prediction of inner-membrane situated pore-lining residues for alpha-helical transmembrane proteins.
    Nguyen D; Helms V; Lee PH
    Proteins; 2014 Jul; 82(7):1503-11. PubMed ID: 24464816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Large tilts in transmembrane helices can be induced during tertiary structure formation.
    Virkki M; Boekel C; Illergård K; Peters C; Shu N; Tsirigos KD; Elofsson A; von Heijne G; Nilsson I
    J Mol Biol; 2014 Jun; 426(13):2529-38. PubMed ID: 24793448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assembly of transmembrane helices of simple polytopic membrane proteins from sequence conservation patterns.
    Park Y; Helms V
    Proteins; 2006 Sep; 64(4):895-905. PubMed ID: 16807902
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discrimination of outer membrane proteins using support vector machines.
    Park KJ; Gromiha MM; Horton P; Suwa M
    Bioinformatics; 2005 Dec; 21(23):4223-9. PubMed ID: 16204348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural comparison and classification of alpha-helical transmembrane domains based on helix interaction patterns.
    Fuchs A; Frishman D
    Proteins; 2010 Sep; 78(12):2587-99. PubMed ID: 20552684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TMBpro: secondary structure, beta-contact and tertiary structure prediction of transmembrane beta-barrel proteins.
    Randall A; Cheng J; Sweredoski M; Baldi P
    Bioinformatics; 2008 Feb; 24(4):513-20. PubMed ID: 18006547
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A guideline to proteome-wide α-helical membrane protein topology predictions.
    Tsirigos KD; Hennerdal A; Käll L; Elofsson A
    Proteomics; 2012 Aug; 12(14):2282-94. PubMed ID: 22685073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TMFoldRec: a statistical potential-based transmembrane protein fold recognition tool.
    Kozma D; Tusnády GE
    BMC Bioinformatics; 2015 Jun; 16():201. PubMed ID: 26123059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [A novel segment-training algorithm for transmembrane helices prediction].
    Wang M; Li A; Wang X; Feng H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):444-8. PubMed ID: 17591278
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequence context and modified hydrophobic moment plots help identify 'horizontal' surface helices in transmembrane protein structure prediction.
    Orgel JP
    J Struct Biol; 2004 Oct; 148(1):51-65. PubMed ID: 15363787
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep Conditional Random Field Approach to Transmembrane Topology Prediction and Application to GPCR Three-Dimensional Structure Modeling.
    Wu H; Wang K; Lu L; Xue Y; Lyu Q; Jiang M
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(5):1106-1114. PubMed ID: 27576262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. waveTM: wavelet-based transmembrane segment prediction.
    Pashou EE; Litou ZI; Liakopoulos TD; Hamodrakas SJ
    In Silico Biol; 2004; 4(2):127-31. PubMed ID: 15107018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.