These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 25546576)
1. Displacing hexokinase from mitochondrial voltage-dependent anion channel impairs GLT-1-mediated glutamate uptake but does not disrupt interactions between GLT-1 and mitochondrial proteins. Jackson JG; O'Donnell JC; Krizman E; Robinson MB J Neurosci Res; 2015 Jul; 93(7):999-1008. PubMed ID: 25546576 [TBL] [Abstract][Full Text] [Related]
2. Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria. Genda EN; Jackson JG; Sheldon AL; Locke SF; Greco TM; O'Donnell JC; Spruce LA; Xiao R; Guo W; Putt M; Seeholzer S; Ischiropoulos H; Robinson MB J Neurosci; 2011 Dec; 31(50):18275-88. PubMed ID: 22171032 [TBL] [Abstract][Full Text] [Related]
3. ATP produced by oxidative phosphorylation is channeled toward hexokinase bound to mitochondrial porin (VDAC) in beetroots (Beta vulgaris). Alcántar-Aguirre FC; Chagolla A; Tiessen A; Délano JP; González de la Vara LE Planta; 2013 Jun; 237(6):1571-83. PubMed ID: 23503782 [TBL] [Abstract][Full Text] [Related]
4. Hexokinase inhibits flux of fluorescently labeled ATP through mitochondrial outer membrane porin. Perevoshchikova IV; Zorov SD; Kotova EA; Zorov DB; Antonenko YN FEBS Lett; 2010 Jun; 584(11):2397-402. PubMed ID: 20412805 [TBL] [Abstract][Full Text] [Related]
5. Deletion of Neuronal GLT-1 in Mice Reveals Its Role in Synaptic Glutamate Homeostasis and Mitochondrial Function. McNair LF; Andersen JV; Aldana BI; Hohnholt MC; Nissen JD; Sun Y; Fischer KD; Sonnewald U; Nyberg N; Webster SC; Kapur K; Rimmele TS; Barone I; Hawks-Mayer H; Lipton JO; Hodgson NW; Hensch TK; Aoki CJ; Rosenberg PA; Waagepetersen HS J Neurosci; 2019 Jun; 39(25):4847-4863. PubMed ID: 30926746 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms of substrate transport-induced clustering of a glial glutamate transporter GLT-1 in astroglial-neuronal cultures. Nakagawa T; Otsubo Y; Yatani Y; Shirakawa H; Kaneko S Eur J Neurosci; 2008 Nov; 28(9):1719-30. PubMed ID: 18973588 [TBL] [Abstract][Full Text] [Related]
7. Disruption of the hexokinase-VDAC complex for tumor therapy. Galluzzi L; Kepp O; Tajeddine N; Kroemer G Oncogene; 2008 Aug; 27(34):4633-5. PubMed ID: 18469866 [TBL] [Abstract][Full Text] [Related]
8. Voltage dependent anion channels (VDACs): a brief introduction with a focus on the outer mitochondrial compartment's roles together with hexokinase-2 in the "Warburg effect" in cancer. Pedersen PL J Bioenerg Biomembr; 2008 Jun; 40(3):123-6. PubMed ID: 18780167 [TBL] [Abstract][Full Text] [Related]
9. VDAC electronics: 2. A new, anaerobic mechanism of generation of the membrane potentials in mitochondria. Lemeshko VV Biochim Biophys Acta; 2014 Jul; 1838(7):1801-8. PubMed ID: 24565793 [TBL] [Abstract][Full Text] [Related]
12. Application of 2D BN/SDS-PAGE coupled with mass spectrometry for identification of VDAC-associated protein complexes related to mitochondrial binding sites for type I brain hexokinase. Crepaldi CR; Vitale PA; Tesch AC; Laure HJ; Rosa JC; de Cerqueira César M Mitochondrion; 2013 Nov; 13(6):823-30. PubMed ID: 23719229 [TBL] [Abstract][Full Text] [Related]
14. Modulation of the voltage-dependent anion channel (VDAC) by glutamate. Gincel D; Silberberg SD; Shoshan-Barmatz V J Bioenerg Biomembr; 2000 Dec; 32(6):571-83. PubMed ID: 15254371 [TBL] [Abstract][Full Text] [Related]
15. VDAC activation by the 18 kDa translocator protein (TSPO), implications for apoptosis. Veenman L; Shandalov Y; Gavish M J Bioenerg Biomembr; 2008 Jun; 40(3):199-205. PubMed ID: 18670869 [TBL] [Abstract][Full Text] [Related]
16. Early loss of the glutamate transporter splice-variant GLT-1v in rat cerebral cortex following lateral fluid-percussion injury. Yi JH; Pow DV; Hazell AS Glia; 2005 Jan; 49(1):121-33. PubMed ID: 15390098 [TBL] [Abstract][Full Text] [Related]
17. Cloning and functional expression in yeast of two human isoforms of the outer mitochondrial membrane channel, the voltage-dependent anion channel. Blachly-Dyson E; Zambronicz EB; Yu WH; Adams V; McCabe ER; Adelman J; Colombini M; Forte M J Biol Chem; 1993 Jan; 268(3):1835-41. PubMed ID: 8420959 [TBL] [Abstract][Full Text] [Related]
18. Transient striatal GLT-1 blockade increases EAAC1 expression, glutamate reuptake, and decreases tyrosine hydroxylase phosphorylation at ser(19). Salvatore MF; Davis RW; Arnold JC; Chotibut T Exp Neurol; 2012 Apr; 234(2):428-36. PubMed ID: 22285253 [TBL] [Abstract][Full Text] [Related]
19. Key regions of VDAC1 functioning in apoptosis induction and regulation by hexokinase. Shoshan-Barmatz V; Zakar M; Rosenthal K; Abu-Hamad S Biochim Biophys Acta; 2009 May; 1787(5):421-30. PubMed ID: 19094960 [TBL] [Abstract][Full Text] [Related]
20. Mild Alkalization Acutely Triggers the Warburg Effect by Enhancing Hexokinase Activity via Voltage-Dependent Anion Channel Binding. Quach CH; Jung KH; Lee JH; Park JW; Moon SH; Cho YS; Choe YS; Lee KH PLoS One; 2016; 11(8):e0159529. PubMed ID: 27479079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]