BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25546577)

  • 1. High-quality RNA extraction from copepods for Next Generation Sequencing: A comparative study.
    Asai S; Ianora A; Lauritano C; Lindeque PK; Carotenuto Y
    Mar Genomics; 2015 Dec; 24 Pt 1():115-8. PubMed ID: 25546577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing preservation protocols to extract high-quality RNA from different tissues of echinoderms for next-generation sequencing.
    Pérez-Portela R; Riesgo A
    Mol Ecol Resour; 2013 Sep; 13(5):884-9. PubMed ID: 23683108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-quality RNA extraction from the sea urchin Paracentrotus lividus embryos.
    Ruocco N; Costantini S; Zupo V; Romano G; Ianora A; Fontana A; Costantini M
    PLoS One; 2017; 12(2):e0172171. PubMed ID: 28199408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Total RNA Isolation from Planarian Tissues.
    Liu SY; Rink JC
    Methods Mol Biol; 2018; 1774():259-265. PubMed ID: 29916159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA extraction for RNA sequencing of archival renal tissues.
    Landolt L; Marti HP; Beisland C; Flatberg A; Eikrem OS
    Scand J Clin Lab Invest; 2016 Sep; 76(5):426-34. PubMed ID: 27173776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenological changes in the Northwestern Mediterranean copepods Centropages typicus and Temora stylifera linked to climate forcing.
    Molinero JC; Ibanez F; Souissi S; Chifflet M; Nival P
    Oecologia; 2005 Oct; 145(4):640-9. PubMed ID: 15965753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative performance analyses of commercially available products for salivary collection and nucleic acid processing in the newborn.
    Maron JL; Johnson KL
    Biotech Histochem; 2015; 90(8):581-6. PubMed ID: 26052888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient extraction of small and large RNAs in bacteria for excellent total RNA sequencing and comprehensive transcriptome analysis.
    Heera R; Sivachandran P; Chinni SV; Mason J; Croft L; Ravichandran M; Yin LS
    BMC Res Notes; 2015 Dec; 8():754. PubMed ID: 26645211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next-generation sequencing of transcriptomes: a guide to RNA isolation in nonmodel animals.
    Gayral P; Weinert L; Chiari Y; Tsagkogeorga G; Ballenghien M; Galtier N
    Mol Ecol Resour; 2011 Jul; 11(4):650-61. PubMed ID: 21481219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of human dental tissue RNA extraction methods for RNA sequencing.
    Zhao Z; Attanasio C; Pedano MS; Cadenas de Llano-Pérula M
    Arch Oral Biol; 2023 Apr; 148():105646. PubMed ID: 36812743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative evaluation of different extraction and quantification methods for forensic RNA analysis.
    Grabmüller M; Madea B; Courts C
    Forensic Sci Int Genet; 2015 May; 16():195-202. PubMed ID: 25625965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome- and transcriptome-assisted development of nuclear insertion/deletion markers for Calanus species (Copepoda: Calanoida) identification.
    Smolina I; Kollias S; Poortvliet M; Nielsen TG; Lindeque P; Castellani C; Møller EF; Blanco-Bercial L; Hoarau G
    Mol Ecol Resour; 2014 Sep; 14(5):1072-9. PubMed ID: 24612683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of RNA extraction kits and histological stains for laser capture microdissected prostate tissue.
    Kolijn K; van Leenders GJ
    BMC Res Notes; 2016 Jan; 9():17. PubMed ID: 26744212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the efficiency of different cell lysis methods and different commercial methods for RNA extraction from Candida albicans stored in RNAlater.
    Rodríguez A; Vaneechoutte M
    BMC Microbiol; 2019 May; 19(1):94. PubMed ID: 31088364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of procedures for RNA-extraction from peripheral blood mononuclear cells.
    Rodríguez A; Duyvejonck H; Van Belleghem JD; Gryp T; Van Simaey L; Vermeulen S; Van Mechelen E; Vaneechoutte M
    PLoS One; 2020; 15(2):e0229423. PubMed ID: 32084228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular physiology of copepods - from biomarkers to transcriptomes and back again.
    Tarrant AM; Nilsson B; Hansen BW
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Jun; 30():230-247. PubMed ID: 30921652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribosomal RNA depletion for efficient use of RNA-seq capacity.
    O'Neil D; Glowatz H; Schlumpberger M
    Curr Protoc Mol Biol; 2013 Jul; Chapter 4():Unit 4.19. PubMed ID: 23821444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Library preparation methods for next-generation sequencing: tone down the bias.
    van Dijk EL; Jaszczyszyn Y; Thermes C
    Exp Cell Res; 2014 Mar; 322(1):12-20. PubMed ID: 24440557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New view of population genetics of zooplankton: RAD-seq analysis reveals population structure of the North Atlantic planktonic copepod Centropages typicus.
    Blanco-Bercial L; Bucklin A
    Mol Ecol; 2016 Apr; 25(7):1566-80. PubMed ID: 26857348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microassays for a set of enzymes in individual small marine copepods.
    Knotz S; Boersma M; Saborowski R
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Nov; 145(3):406-11. PubMed ID: 16978893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.