These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 25546807)

  • 1. Studying macromolecular complex stoichiometries by peptide-based mass spectrometry.
    Wohlgemuth I; Lenz C; Urlaub H
    Proteomics; 2015 Mar; 15(5-6):862-79. PubMed ID: 25546807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating macromolecular complexes using top-down mass spectrometry.
    Boeri Erba E
    Proteomics; 2014 May; 14(10):1259-70. PubMed ID: 24723549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The emerging role of native mass spectrometry in characterizing the structure and dynamics of macromolecular complexes.
    Boeri Erba E; Petosa C
    Protein Sci; 2015 Aug; 24(8):1176-92. PubMed ID: 25676284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass spectrometric methods to analyze the structural organization of macromolecular complexes.
    Rajabi K; Ashcroft AE; Radford SE
    Methods; 2015 Nov; 89():13-21. PubMed ID: 25782628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nondenaturing mass spectrometry to study noncovalent protein/protein and protein/ligand complexes: technical aspects and application to the determination of binding stoichiometries.
    Sanglier S; Atmanene C; Chevreux G; Dorsselaer AV
    Methods Mol Biol; 2008; 484():217-43. PubMed ID: 18592183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of protein phosphorylation stoichiometry by selected reaction monitoring mass spectrometry.
    Jin LL; Tong J; Prakash A; Peterman SM; St-Germain JR; Taylor P; Trudel S; Moran MF
    J Proteome Res; 2010 May; 9(5):2752-61. PubMed ID: 20205385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing Intact Macromolecular Complexes Using Native Mass Spectrometry.
    Boeri Erba E; Signor L; Oliva MF; Hans F; Petosa C
    Methods Mol Biol; 2018; 1764():133-151. PubMed ID: 29605913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of food proteins and peptides by mass spectrometry-based techniques.
    Mamone G; Picariello G; Caira S; Addeo F; Ferranti P
    J Chromatogr A; 2009 Oct; 1216(43):7130-42. PubMed ID: 19699482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative peptide and protein profiling by mass spectrometry.
    Schmidt A; Bisle B; Kislinger T
    Methods Mol Biol; 2009; 492():21-38. PubMed ID: 19241025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A synthetic protein approach toward accurate mass spectrometric quantification of component stoichiometry of multiprotein complexes.
    Kito K; Ota K; Fujita T; Ito T
    J Proteome Res; 2007 Feb; 6(2):792-800. PubMed ID: 17269735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of protein complex constituents and their phosphorylation states on a LTQ-Orbitrap instrument.
    Przybylski C; Jünger MA; Aubertin J; Radvanyi F; Aebersold R; Pflieger D
    J Proteome Res; 2010 Oct; 9(10):5118-32. PubMed ID: 20734990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches.
    Salih E
    Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The diverse and expanding role of mass spectrometry in structural and molecular biology.
    Lössl P; van de Waterbeemd M; Heck AJ
    EMBO J; 2016 Dec; 35(24):2634-2657. PubMed ID: 27797822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of mass spectrometry-compatible surfactants for shotgun proteomics.
    Chen EI; Cociorva D; Norris JL; Yates JR
    J Proteome Res; 2007 Jul; 6(7):2529-38. PubMed ID: 17530876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developments in FTICR-MS and Its Potential for Body Fluid Signatures.
    Nicolardi S; Bogdanov B; Deelder AM; Palmblad M; van der Burgt YE
    Int J Mol Sci; 2015 Nov; 16(11):27133-44. PubMed ID: 26580595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of targeted proteomics to determine the stoichiometry of large macromolecular assemblies.
    Ori A; Andrés-Pons A; Beck M
    Methods Cell Biol; 2014; 122():117-46. PubMed ID: 24857728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative density gradient analysis by mass spectrometry (qDGMS) and complexome profiling analysis (ComPrAn) R package for the study of macromolecular complexes.
    Páleníková P; Harbour ME; Ding S; Fearnley IM; Van Haute L; Rorbach J; Scavetta R; Minczuk M; Rebelo-Guiomar P
    Biochim Biophys Acta Bioenerg; 2021 Jun; 1862(6):148399. PubMed ID: 33592209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the utility of isotopic fine structure mass spectrometry in protein identification.
    Miladinović SM; Kozhinov AN; Gorshkov MV; Tsybin YO
    Anal Chem; 2012 May; 84(9):4042-51. PubMed ID: 22468966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometry technologies for proteomics.
    Cañas B; López-Ferrer D; Ramos-Fernández A; Camafeita E; Calvo E
    Brief Funct Genomic Proteomic; 2006 Feb; 4(4):295-320. PubMed ID: 17202122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The application of proteomic techniques to fungal protein identification and quantification.
    Rohrbough JG; Galgiani JN; Wysocki VH
    Ann N Y Acad Sci; 2007 Sep; 1111():133-46. PubMed ID: 17344531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.