BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 25547126)

  • 21. Predicting human microRNA precursors based on an optimized feature subset generated by GA-SVM.
    Wang Y; Chen X; Jiang W; Li L; Li W; Yang L; Liao M; Lian B; Lv Y; Wang S; Wang S; Li X
    Genomics; 2011 Aug; 98(2):73-8. PubMed ID: 21586321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CATchUP: A Web Database for Spatiotemporally Regulated Genes.
    Nakamura Y; Kudo T; Terashima S; Saito M; Nambara E; Yano K
    Plant Cell Physiol; 2017 Jan; 58(1):e3. PubMed ID: 28013273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An intelligent model for prediction of abiotic stress-responsive microRNAs in plants using statistical moments based features and ensemble approaches.
    Naseem A; Khan YD
    Methods; 2024 Aug; 228():65-79. PubMed ID: 38768931
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequence, Secondary Structure, and Phylogenetic Conservation of MicroRNAs in
    Mazhar MW; Yusof NY; Shaheen T; Saif S; Raza A; Mazhar F
    Bioinform Biol Insights; 2022; 16():11779322221142116. PubMed ID: 36570328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization and evolution of microRNA genes derived from repetitive elements and duplication events in plants.
    Sun J; Zhou M; Mao Z; Li C
    PLoS One; 2012; 7(4):e34092. PubMed ID: 22523544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BosFinder: a novel pre-microRNA gene prediction algorithm in Bos taurus.
    Sadeghi B; Ahmadi H; Azimzadeh-Jamalkandi S; Nassiri MR; Masoudi-Nejad A
    Anim Genet; 2014 Aug; 45(4):479-84. PubMed ID: 24835488
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved Pre-miRNA Classification by Reducing the Effect of Class Imbalance.
    Zhong Y; Xuan P; Han K; Zhang W; Li J
    Biomed Res Int; 2015; 2015():960108. PubMed ID: 26640803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa.
    Li Y; Li W; Jin YX
    Acta Biochim Biophys Sin (Shanghai); 2005 Feb; 37(2):75-87. PubMed ID: 15685364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of microRNA precursors with support vector machine and string kernel.
    Xu JH; Li F; Sun QF
    Genomics Proteomics Bioinformatics; 2008 Jun; 6(2):121-8. PubMed ID: 18973868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MatPred: Computational Identification of Mature MicroRNAs within Novel Pre-MicroRNAs.
    Li J; Wang Y; Wang L; Feng W; Luan K; Dai X; Xu C; Meng X; Zhang Q; Liang H
    Biomed Res Int; 2015; 2015():546763. PubMed ID: 26682221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ASmiR: a machine learning framework for prediction of abiotic stress-specific miRNAs in plants.
    Pradhan UK; Meher PK; Naha S; Rao AR; Kumar U; Pal S; Gupta A
    Funct Integr Genomics; 2023 Mar; 23(2):92. PubMed ID: 36939943
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of novel miRNAs and associated target genes in Glycine max.
    Joshi T; Yan Z; Libault M; Jeong DH; Park S; Green PJ; Sherrier DJ; Farmer A; May G; Meyers BC; Xu D; Stacey G
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S14. PubMed ID: 20122185
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening.
    Moxon S; Jing R; Szittya G; Schwach F; Rusholme Pilcher RL; Moulton V; Dalmay T
    Genome Res; 2008 Oct; 18(10):1602-9. PubMed ID: 18653800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.).
    Kumar RR; Pathak H; Sharma SK; Kala YK; Nirjal MK; Singh GP; Goswami S; Rai RD
    Funct Integr Genomics; 2015 May; 15(3):323-48. PubMed ID: 25480755
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New insights into tomato microRNAs.
    Cardoso TCS; Alves TC; Caneschi CM; Santana DDRG; Fernandes-Brum CN; Reis GLD; Daude MM; Ribeiro THC; Gómez MMD; Lima AA; Gomes LAA; Gomes MS; Gandolfi PE; Amaral LRD; Chalfun-Júnior A; Maluf WR; de Souza Gomes M
    Sci Rep; 2018 Oct; 8(1):16069. PubMed ID: 30375421
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes.
    Bonnet E; Wuyts J; Rouzé P; Van de Peer Y
    Proc Natl Acad Sci U S A; 2004 Aug; 101(31):11511-6. PubMed ID: 15272084
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of Stress Associated microRNAs in
    López-Galiano MJ; Sentandreu V; Martínez-Ramírez AC; Rausell C; Real MD; Camañes G; Ruiz-Rivero O; Crespo-Salvador O; García-Robles I
    Genes (Basel); 2019 Jun; 10(6):. PubMed ID: 31234458
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-wide identification of reverse complementary microRNA genes in plants.
    Shao C; Ma X; Xu X; Wang H; Meng Y
    PLoS One; 2012; 7(10):e46991. PubMed ID: 23110057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intragenomic matching reveals a huge potential for miRNA-mediated regulation in plants.
    Lindow M; Jacobsen A; Nygaard S; Mang Y; Krogh A
    PLoS Comput Biol; 2007 Nov; 3(11):e238. PubMed ID: 18052543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In silico identification and characterization of microRNAs and their putative target genes in Solanaceae plants.
    Kim HJ; Baek KH; Lee BW; Choi D; Hur CG
    Genome; 2011 Feb; 54(2):91-8. PubMed ID: 21326365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.