These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 25547218)
1. Instrument contributions to resolution and sensitivity in ultra high performance liquid chromatography using small bore columns: comparison of diode array and triple quadrupole mass spectrometry detection. Buckenmaier S; Miller CA; van de Goor T; Dittmann MM J Chromatogr A; 2015 Jan; 1377():64-74. PubMed ID: 25547218 [TBL] [Abstract][Full Text] [Related]
2. Contribution of various types of liquid chromatography-mass spectrometry instruments to band broadening in fast analysis. Spaggiari D; Fekete S; Eugster PJ; Veuthey JL; Geiser L; Rudaz S; Guillarme D J Chromatogr A; 2013 Oct; 1310():45-55. PubMed ID: 23993747 [TBL] [Abstract][Full Text] [Related]
3. Band broadening in fast gradient high-performance liquid chromatography: application to the second generation of 4.6 mm I.D. silica monolithic columns. Gritti F; Guiochon G J Chromatogr A; 2012 May; 1238():77-90. PubMed ID: 22503619 [TBL] [Abstract][Full Text] [Related]
4. Intrinsic advantages of packed capillaries over narrow-bore columns in very high-pressure gradient liquid chromatography. Gritti F; McDonald T; Gilar M J Chromatogr A; 2016 Jun; 1451():107-119. PubMed ID: 27185055 [TBL] [Abstract][Full Text] [Related]
5. [Research advances in nano liquid chromatography instrumentation]. Yang S; Li N; Ma Z; Tang T; Li T Se Pu; 2021 Oct; 39(10):1065-1076. PubMed ID: 34505428 [TBL] [Abstract][Full Text] [Related]
6. Understanding and diminishing the extra-column band broadening effects in supercritical fluid chromatography. De Pauw R; Shoykhet Choikhet K; Desmet G; Broeckhoven K J Chromatogr A; 2015 Jul; 1403():132-7. PubMed ID: 26054561 [TBL] [Abstract][Full Text] [Related]
7. The impact of extra-column band broadening on the chromatographic efficiency of 5 cm long narrow-bore very efficient columns. Fekete S; Fekete J J Chromatogr A; 2011 Aug; 1218(31):5286-91. PubMed ID: 21726868 [TBL] [Abstract][Full Text] [Related]
8. On the feasibility to conduct gradient liquid chromatography separations in narrow-bore columns at pressures up to 2000bar. De Pauw R; Swier T; Degreef B; Desmet G; Broeckhoven K J Chromatogr A; 2016 Nov; 1473():48-55. PubMed ID: 28029367 [TBL] [Abstract][Full Text] [Related]
9. Ultra high performance liquid chromatography-time-of-flight high resolution mass spectrometry in the analysis of hexabromocyclododecane diastereomers: method development and comparative evaluation versus ultra high performance liquid chromatography coupled to Orbitrap high resolution mass spectrometry and triple quadrupole tandem mass spectrometry. Zacs D; Rjabova J; Pugajeva I; Nakurte I; Viksna A; Bartkevics V J Chromatogr A; 2014 Oct; 1366():73-83. PubMed ID: 25262032 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of 1.0 mm i.d. column performances on ultra high pressure liquid chromatography instrumentation. Lestremau F; Wu D; Szücs R J Chromatogr A; 2010 Jul; 1217(30):4925-33. PubMed ID: 20566199 [TBL] [Abstract][Full Text] [Related]
11. Kinetic performance of narrow-bore columns on a micro-system for high performance liquid chromatography. Gritti F; Guiochon G J Chromatogr A; 2012 May; 1236():105-14. PubMed ID: 22464000 [TBL] [Abstract][Full Text] [Related]
12. High-efficiency peptide analysis on monolithic multimode capillary columns: Pressure-assisted capillary electrochromatography/capillary electrophoresis coupled to UV and electrospray ionization-mass spectrometry. Ivanov AR; Horváth C; Karger BL Electrophoresis; 2003 Nov; 24(21):3663-73. PubMed ID: 14613191 [TBL] [Abstract][Full Text] [Related]
14. The impact of column connection on band broadening in very high pressure liquid chromatography. Stankovich JJ; Gritti F; Stevenson PG; Guiochon G J Sep Sci; 2013 Sep; 36(17):2709-17. PubMed ID: 23900740 [TBL] [Abstract][Full Text] [Related]
15. Suitable interface for coupling liquid chromatography to inductively coupled plasma-mass spectrometry for the analysis of organic matrices. 2 Comparison of Sample Introduction Systems. Bernardin M; Bessueille-Barbier F; Le Masle A; Lienemann CP; Heinisch S J Chromatogr A; 2019 Oct; 1603():380-387. PubMed ID: 31113532 [TBL] [Abstract][Full Text] [Related]
16. Effect of pre- and post-column band broadening on the performance of high-speed chromatography columns under isocratic and gradient conditions. Vanderlinden K; Broeckhoven K; Vanderheyden Y; Desmet G J Chromatogr A; 2016 Apr; 1442():73-82. PubMed ID: 26987413 [TBL] [Abstract][Full Text] [Related]
17. How to utilize the true performance of monolithic silica columns. Ikegami T; Dicks E; Kobayashi H; Morisaka H; Tokuda D; Cabrera K; Hosoya K; Tanaka N J Sep Sci; 2004 Nov; 27(15-16):1292-302. PubMed ID: 15587278 [TBL] [Abstract][Full Text] [Related]
18. Rapid development of core-shell column technology: accurate measurements of the intrinsic column efficiency of narrow-bore columns packed with 4.6 down to 1.3 μm superficially porous particles. Gritti F; Guiochon G J Chromatogr A; 2014 Mar; 1333():60-9. PubMed ID: 24529958 [TBL] [Abstract][Full Text] [Related]
19. Efficiency of short, small-diameter columns for reversed-phase liquid chromatography under practical operating conditions. Ma Y; Chassy AW; Miyazaki S; Motokawa M; Morisato K; Uzu H; Ohira M; Furuno M; Nakanishi K; Minakuchi H; Mriziq K; Farkas T; Fiehn O; Tanaka N J Chromatogr A; 2015 Feb; 1383():47-57. PubMed ID: 25648581 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the kinetic performance of new prototype 2.1mm×100mm narrow-bore columns packed with 1.6μm superficially porous particles. Gritti F; Shiner SJ; Fairchild JN; Guiochon G J Chromatogr A; 2014 Mar; 1334():30-43. PubMed ID: 24572546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]