These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 25548049)
41. Two systems for targeted gene deletion in Coxiella burnetii. Beare PA; Larson CL; Gilk SD; Heinzen RA Appl Environ Microbiol; 2012 Jul; 78(13):4580-9. PubMed ID: 22522687 [TBL] [Abstract][Full Text] [Related]
42. Construction, characterization and application of molecular tools for metabolic engineering of Synechocystis sp. Qi F; Yao L; Tan X; Lu X Biotechnol Lett; 2013 Oct; 35(10):1655-61. PubMed ID: 23743956 [TBL] [Abstract][Full Text] [Related]
43. Enhanced production of ectoine from methane using metabolically engineered Methylomicrobium alcaliphilum 20Z. Cho S; Lee YS; Chai H; Lim SE; Na JG; Lee J Biotechnol Biofuels Bioprod; 2022 Jan; 15(1):5. PubMed ID: 35418141 [TBL] [Abstract][Full Text] [Related]
44. Activity and composition of methanotrophic bacterial communities in planted rice soil studied by flux measurements, analyses of pmoA gene and stable isotope probing of phospholipid fatty acids. Shrestha M; Abraham WR; Shrestha PM; Noll M; Conrad R Environ Microbiol; 2008 Feb; 10(2):400-12. PubMed ID: 18177369 [TBL] [Abstract][Full Text] [Related]
45. Possible cross-feeding pathway of facultative methylotroph Methyloceanibacter caenitepidi Gela4 on methanotroph Methylocaldum marinum S8. Takeuchi M; Ozaki H; Hiraoka S; Kamagata Y; Sakata S; Yoshioka H; Iwasaki W PLoS One; 2019; 14(3):e0213535. PubMed ID: 30870453 [TBL] [Abstract][Full Text] [Related]
46. Unlocking the biosynthesis of sesquiterpenoids from methane via the methylerythritol phosphate pathway in methanotrophic bacteria, using α-humulene as a model compound. Nguyen AD; Kim D; Lee EY Metab Eng; 2020 Sep; 61():69-78. PubMed ID: 32387228 [TBL] [Abstract][Full Text] [Related]
47. Exploration of an Efficient Electroporation System for Heterologous Gene Expression in the Genome of Methanotroph. Hu L; Guo S; Yan X; Zhang T; Xiang J; Fei Q Front Microbiol; 2021; 12():717033. PubMed ID: 34421878 [TBL] [Abstract][Full Text] [Related]
48. Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Fuse H; Ohta M; Takimura O; Murakami K; Inoue H; Yamaoka Y; Oclarit JM; Omori T Biosci Biotechnol Biochem; 1998 Oct; 62(10):1925-31. PubMed ID: 9836428 [TBL] [Abstract][Full Text] [Related]
49. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Kalyuzhnaya MG; Yang S; Rozova ON; Smalley NE; Clubb J; Lamb A; Gowda GA; Raftery D; Fu Y; Bringel F; Vuilleumier S; Beck DA; Trotsenko YA; Khmelenina VN; Lidstrom ME Nat Commun; 2013; 4():2785. PubMed ID: 24302011 [TBL] [Abstract][Full Text] [Related]
50. Methanotrophs and methanotrophic activity in engineered landfill biocovers. Ait-Benichou S; Jugnia LB; Greer CW; Cabral AR Waste Manag; 2009 Sep; 29(9):2509-17. PubMed ID: 19477627 [TBL] [Abstract][Full Text] [Related]
51. Methane utilization in Methylomicrobium alcaliphilum 20Z Akberdin IR; Thompson M; Hamilton R; Desai N; Alexander D; Henard CA; Guarnieri MT; Kalyuzhnaya MG Sci Rep; 2018 Feb; 8(1):2512. PubMed ID: 29410419 [TBL] [Abstract][Full Text] [Related]
52. Construction of isogenic mutants in Streptococcus gallolyticus based on the development of new mobilizable vectors. Danne C; Guérillot R; Glaser P; Trieu-Cuot P; Dramsi S Res Microbiol; 2013 Dec; 164(10):973-8. PubMed ID: 24157486 [TBL] [Abstract][Full Text] [Related]
53. Extrachromosomal, extraordinary and essential--the plasmids of the Roseobacter clade. Petersen J; Frank O; Göker M; Pradella S Appl Microbiol Biotechnol; 2013 Apr; 97(7):2805-15. PubMed ID: 23435940 [TBL] [Abstract][Full Text] [Related]
54. [Research progresses of methanotrophs and methane monooxygenases]. Han B; Su T; Li X; Xing X Sheng Wu Gong Cheng Xue Bao; 2008 Sep; 24(9):1511-9. PubMed ID: 19160830 [TBL] [Abstract][Full Text] [Related]
56. Optimized Tools and Methods for Methanotroph Genome Editing. Nath S; Henard JM; Henard CA Methods Mol Biol; 2022; 2489():421-434. PubMed ID: 35524062 [TBL] [Abstract][Full Text] [Related]
57. A Mutagenic Screen Identifies a TonB-Dependent Receptor Required for the Lanthanide Metal Switch in the Type I Methanotroph "Methylotuvimicrobium buryatense" 5GB1C. Groom JD; Ford SM; Pesesky MW; Lidstrom ME J Bacteriol; 2019 Aug; 201(15):. PubMed ID: 31085692 [TBL] [Abstract][Full Text] [Related]
58. Abundance, distribution and potential activity of methane oxidizing bacteria in permafrost soils from the Lena Delta, Siberia. Liebner S; Wagner D Environ Microbiol; 2007 Jan; 9(1):107-17. PubMed ID: 17227416 [TBL] [Abstract][Full Text] [Related]
59. Integrative Genome-Scale Metabolic Modeling Reveals Versatile Metabolic Strategies for Methane Utilization in Methylomicrobium album BG8. Villada JC; Duran MF; Lim CK; Stein LY; Lee PKH mSystems; 2022 Apr; 7(2):e0007322. PubMed ID: 35258342 [TBL] [Abstract][Full Text] [Related]
60. Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria. Campbell MA; Nyerges G; Kozlowski JA; Poret-Peterson AT; Stein LY; Klotz MG FEMS Microbiol Lett; 2011 Sep; 322(1):82-9. PubMed ID: 21682764 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]