These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 2554814)
1. A comparison of cobalt(II) and iron(II) hydroxyl and superoxide free radical formation. Kadiiska MB; Maples KR; Mason RP Arch Biochem Biophys; 1989 Nov; 275(1):98-111. PubMed ID: 2554814 [TBL] [Abstract][Full Text] [Related]
2. Kinetic studies on spin trapping of superoxide and hydroxyl radicals generated in NADPH-cytochrome P-450 reductase-paraquat systems. Effect of iron chelates. Yamazaki I; Piette LH; Grover TA J Biol Chem; 1990 Jan; 265(2):652-9. PubMed ID: 2153108 [TBL] [Abstract][Full Text] [Related]
3. ESR studies on the production of reactive oxygen intermediates by rat liver microsomes in the presence of NADPH or NADH. Rashba-Step J; Turro NJ; Cederbaum AI Arch Biochem Biophys; 1993 Jan; 300(1):391-400. PubMed ID: 8380968 [TBL] [Abstract][Full Text] [Related]
4. Oxygen-derived free radical and active oxygen complex formation from cobalt(II) chelates in vitro. Hanna PM; Kadiiska MB; Mason RP Chem Res Toxicol; 1992; 5(1):109-15. PubMed ID: 1316186 [TBL] [Abstract][Full Text] [Related]
5. Superoxide dismutase-like activities of copper(II) complexes tested in serum. Huber KR; Sridhar R; Griffith EH; Amma EL; Roberts J Biochim Biophys Acta; 1987 Sep; 915(2):267-76. PubMed ID: 2820500 [TBL] [Abstract][Full Text] [Related]
6. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical. Britigan BE; Roeder TL; Buettner GR Biochim Biophys Acta; 1991 Oct; 1075(3):213-22. PubMed ID: 1659450 [TBL] [Abstract][Full Text] [Related]
7. Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide. Yim MB; Chock PB; Stadtman ER Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5006-10. PubMed ID: 2164216 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms of generation of oxygen radicals and reductive mobilization of ferritin iron by lipoamide dehydrogenase. Bando Y; Aki K J Biochem; 1991 Mar; 109(3):450-4. PubMed ID: 1652585 [TBL] [Abstract][Full Text] [Related]
9. Quinolinic acid-iron(ii) complexes: slow autoxidation, but enhanced hydroxyl radical production in the Fenton reaction. Pláteník J; Stopka P; Vejrazka M; Stípek S Free Radic Res; 2001 May; 34(5):445-59. PubMed ID: 11378528 [TBL] [Abstract][Full Text] [Related]
10. Spin-trapping and human neutrophils. Limits of detection of hydroxyl radical. Pou S; Cohen MS; Britigan BE; Rosen GM J Biol Chem; 1989 Jul; 264(21):12299-302. PubMed ID: 2545706 [TBL] [Abstract][Full Text] [Related]
11. Evidence for superoxide formation during hepatic metabolism of tamoxifen. Turner MJ; Fields CE; Everman DB Biochem Pharmacol; 1991 Jun; 41(11):1701-5. PubMed ID: 1645968 [TBL] [Abstract][Full Text] [Related]
12. Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment. Rashba-Step J; Turro NJ; Cederbaum AI Arch Biochem Biophys; 1993 Jan; 300(1):401-8. PubMed ID: 8380969 [TBL] [Abstract][Full Text] [Related]
13. Catalysis of the Haber-Weiss reaction by iron-diethylenetriaminepentaacetate. Egan TJ; Barthakur SR; Aisen P J Inorg Biochem; 1992 Dec; 48(4):241-9. PubMed ID: 1336036 [TBL] [Abstract][Full Text] [Related]
14. Reaction of the carbonate radical with the spin-trap 5,5-dimethyl-1-pyrroline-N-oxide in chemical and cellular systems: pulse radiolysis, electron paramagnetic resonance, and kinetic-competition studies. Alvarez MN; Peluffo G; Folkes L; Wardman P; Radi R Free Radic Biol Med; 2007 Dec; 43(11):1523-33. PubMed ID: 17964423 [TBL] [Abstract][Full Text] [Related]
15. Evidence for intracellular superoxide formation following the exposure of guinea pig enterocytes to bleomycin. Turner MJ; Bozarth CH; Strauss KE Biochem Pharmacol; 1989 Jan; 38(1):85-90. PubMed ID: 2462883 [TBL] [Abstract][Full Text] [Related]
16. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals. Li L; Abe Y; Kanagawa K; Shoji T; Mashino T; Mochizuki M; Tanaka M; Miyata N Anal Chim Acta; 2007 Sep; 599(2):315-9. PubMed ID: 17870296 [TBL] [Abstract][Full Text] [Related]
17. Reaction of vanadyl with hydrogen peroxide. An ESR and spin trapping study. Carmichael AJ Free Radic Res Commun; 1990; 10(1-2):37-45. PubMed ID: 2165984 [TBL] [Abstract][Full Text] [Related]
18. Hydroxyl radical generation by red tide algae. Oda T; Akaike T; Sato K; Ishimatsu A; Takeshita S; Muramatsu T; Maeda H Arch Biochem Biophys; 1992 Apr; 294(1):38-43. PubMed ID: 1312810 [TBL] [Abstract][Full Text] [Related]
19. Do human neutrophils make hydroxyl radical? Determination of free radicals generated by human neutrophils activated with a soluble or particulate stimulus using electron paramagnetic resonance spectrometry. Britigan BE; Rosen GM; Chai Y; Cohen MS J Biol Chem; 1986 Apr; 261(10):4426-31. PubMed ID: 3007455 [TBL] [Abstract][Full Text] [Related]
20. ESR spin trapping studies into the nature of the oxidizing species formed in the Fenton reaction: pitfalls associated with the use of 5,5-dimethyl-1-pyrroline-N-oxide in the detection of the hydroxyl radical. Burkitt MJ Free Radic Res Commun; 1993; 18(1):43-57. PubMed ID: 8394273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]