These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 25548877)

  • 1. Use of gnotobiotic zebrafish to study Vibrio anguillarum pathogenicity.
    Oyarbide U; Iturria I; Rainieri S; Pardo MA
    Zebrafish; 2015 Feb; 12(1):71-80. PubMed ID: 25548877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protective Yeasts Control
    Caruffo M; Navarrete NC; Salgado OA; Faúndez NB; Gajardo MC; Feijóo CG; Reyes-Jara A; García K; Navarrete P
    Front Cell Infect Microbiol; 2016; 6():127. PubMed ID: 27790411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrio anguillarum Is Genetically and Phenotypically Unaffected by Long-Term Continuous Exposure to the Antibacterial Compound Tropodithietic Acid.
    Rasmussen BB; Grotkjær T; D'Alvise PW; Yin G; Zhang F; Bunk B; Spröer C; Bentzon-Tilia M; Gram L
    Appl Environ Microbiol; 2016 Aug; 82(15):4802-4810. PubMed ID: 27235441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain-specific quorum-sensing responses determine virulence properties in Vibrio anguillarum.
    Mauritzen JJ; Søndberg E; Kalatzis PG; Roager L; Gram L; Svenningsen SL; Middelboe M
    Environ Microbiol; 2023 Jul; 25(7):1344-1362. PubMed ID: 36807464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of speA and aroC genes impacts the pathogenicity of Vibrio anguillarum in spotted sea bass.
    Xie H; Huang Y; Wang S; Che J; Luo T; Li L; Bao B
    Microb Pathog; 2024 Apr; 189():106597. PubMed ID: 38395316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression profiles of heat shock protein 70 and high-mobility groups box-1 protein in gnotobiotic brine shrimp challenged with different virulence levels of isogenic Vibrio harveyi strains.
    Hong NTX; Baruah K; Nguyen Van H; Vanrompay D; Bossier P
    J Fish Dis; 2024 Aug; 47(8):e13954. PubMed ID: 38555529
    [No Abstract]   [Full Text] [Related]  

  • 7. Exogenous maltose enhances Zebrafish immunity to levofloxacin-resistant Vibrio alginolyticus.
    Jiang M; Yang L; Chen ZG; Lai SS; Zheng J; Peng B
    Microb Biotechnol; 2020 Jul; 13(4):1213-1227. PubMed ID: 32364684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A circRNA therapy based on Rnf103 to inhibit Vibrio anguillarum infection.
    Zheng W; Lv X; Tao Y; Cui Y; Zhu X; Zhu T; Xu T
    Cell Rep; 2023 Nov; 42(11):113314. PubMed ID: 37874674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gnotobiotic zebrafish microbiota display inter-individual variability affecting host physiology.
    Adade EE; Stevick RJ; Pérez-Pascual D; Ghigo JM; Valm AM
    bioRxiv; 2023 Feb; ():. PubMed ID: 36778358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immersion infection of germ-free zebrafish with Listeria monocytogenes induces transient expression of innate immune response genes.
    Shan Y; Fang C; Cheng C; Wang Y; Peng J; Fang W
    Front Microbiol; 2015; 6():373. PubMed ID: 25972853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zebrafish gut colonization by mCherry-labelled lactic acid bacteria.
    Russo P; Iturria I; Mohedano ML; Caggianiello G; Rainieri S; Fiocco D; Angel Pardo M; López P; Spano G
    Appl Microbiol Biotechnol; 2015 Apr; 99(8):3479-90. PubMed ID: 25586576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic control of intestinal barrier function and inflammation in zebrafish.
    Marjoram L; Alvers A; Deerhake ME; Bagwell J; Mankiewicz J; Cocchiaro JL; Beerman RW; Willer J; Sumigray KD; Katsanis N; Tobin DM; Rawls JF; Goll MG; Bagnat M
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2770-5. PubMed ID: 25730872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutrophils in host defense: new insights from zebrafish.
    Harvie EA; Huttenlocher A
    J Leukoc Biol; 2015 Oct; 98(4):523-37. PubMed ID: 25717145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The CXCR3-CXCL11 signaling axis mediates macrophage recruitment and dissemination of mycobacterial infection.
    Torraca V; Cui C; Boland R; Bebelman JP; van der Sar AM; Smit MJ; Siderius M; Spaink HP; Meijer AH
    Dis Model Mech; 2015 Mar; 8(3):253-69. PubMed ID: 25573892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valp1, a Newly Identified Temperate Phage Facilitating Coexistence of Lysogenic and Non-Lysogenic Populations of
    Arce M; Venegas G; Paez K; Latz S; Navarrete P; Caruffo M; Feijoo C; García K; Bastías R
    Pathogens; 2024 Mar; 13(4):. PubMed ID: 38668240
    [No Abstract]   [Full Text] [Related]  

  • 16. Probiotic Yeasts and
    Vargas O; Gutiérrez MS; Caruffo M; Valderrama B; Medina DA; García K; Reyes-Jara A; Toro M; Feijóo CG; Navarrete P
    Front Microbiol; 2021; 12():647977. PubMed ID: 34248866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Microbiota and Gut-Related Disorders: Insights from Animal Models.
    Kamareddine L; Najjar H; Sohail MU; Abdulkader H; Al-Asmakh M
    Cells; 2020 Nov; 9(11):. PubMed ID: 33147801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zebrafish Models for Pathogenic Vibrios.
    Nag D; Farr DA; Walton MG; Withey JH
    J Bacteriol; 2020 Nov; 202(24):. PubMed ID: 32778562
    [No Abstract]   [Full Text] [Related]  

  • 19. Zebrafish as a Model for Fish Diseases in Aquaculture.
    Jørgensen LVG
    Pathogens; 2020 Jul; 9(8):. PubMed ID: 32726918
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.