These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25549009)

  • 21. A common mechanism underlies the dark fraction formation and fluorescence blinking of quantum dots.
    Durisic N; Wiseman PW; Grütter P; Heyes CD
    ACS Nano; 2009 May; 3(5):1167-75. PubMed ID: 19385605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sub-Bandgap Optical Modulation of Quantum Dot Blinking Statistics.
    Hasham M; Wilson MWB
    J Phys Chem Lett; 2020 Aug; 11(15):6404-6412. PubMed ID: 32787286
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Power-law analysis of surface-plasmon-enhanced electromagnetic field dependence of blinking SERS of thiacyanine or thiacarbocyanine adsorbed on single silver nanoaggregates.
    Kitahama Y; Tanaka Y; Itoh T; Ozaki Y
    Phys Chem Chem Phys; 2011 Apr; 13(16):7439-48. PubMed ID: 21412542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Blinking in quantum dots: The origin of the grey state and power law statistics.
    Ye M; Searson PC
    Phys Rev B Condens Matter Mater Phys; 2011 Sep; 84():125317. PubMed ID: 25152610
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrafast Laser Studies of Two-Photon Excited Fluorescence Intermittency in Single CdSe/ZnS Quantum Dots.
    Early KT; Nesbitt DJ
    Nano Lett; 2015 Dec; 15(12):7781-7. PubMed ID: 26542640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Blinking Suppression in Highly Excited CdSe/ZnS Quantum Dots by Electron Transfer under Large Positive Gibbs (Free) Energy Change.
    Thomas EM; Ghimire S; Kohara R; Anil AN; Yuyama KI; Takano Y; Thomas KG; Biju V
    ACS Nano; 2018 Sep; 12(9):9060-9069. PubMed ID: 30103604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The fluorescence intermittency for quantum dots is not power-law distributed: a luminescence intensity resolved approach.
    Schmidt R; Krasselt C; Göhler C; von Borczyskowski C
    ACS Nano; 2014 Apr; 8(4):3506-21. PubMed ID: 24580107
    [TBL] [Abstract][Full Text] [Related]  

  • 28. All-optical fluorescence blinking control in quantum dots with ultrafast mid-infrared pulses.
    Shi J; Sun W; Utzat H; Farahvash A; Gao FY; Zhang Z; Barotov U; Willard AP; Nelson KA; Bawendi MG
    Nat Nanotechnol; 2021 Dec; 16(12):1355-1361. PubMed ID: 34811550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: nonblinking and correlation with ensemble measurements.
    Qin H; Niu Y; Meng R; Lin X; Lai R; Fang W; Peng X
    J Am Chem Soc; 2014 Jan; 136(1):179-87. PubMed ID: 24345247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photon counting statistics for blinking CdSe-ZnS quantum dots: a Lévy walk process.
    Margolin G; Protasenko V; Kuno M; Barkai E
    J Phys Chem B; 2006 Sep; 110(38):19053-60. PubMed ID: 16986903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purifying single photon emission from giant shell CdSe/CdS quantum dots at room temperature.
    Morozov S; Vezzoli S; Myslovska A; Di Giacomo A; Mortensen NA; Moreels I; Sapienza R
    Nanoscale; 2023 Jan; 15(4):1645-1651. PubMed ID: 36597874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly versatile near-infrared emitters based on an atomically defined HgS interlayer embedded into a CdSe/CdS quantum dot.
    Sayevich V; Robinson ZL; Kim Y; Kozlov OV; Jung H; Nakotte T; Park YS; Klimov VI
    Nat Nanotechnol; 2021 Jun; 16(6):673-679. PubMed ID: 33767383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Room Temperature Single-Photon Emission from Individual Perovskite Quantum Dots.
    Park YS; Guo S; Makarov NS; Klimov VI
    ACS Nano; 2015 Oct; 9(10):10386-93. PubMed ID: 26312994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photofabrication of fullerene-shelled quantum dots supramolecular nanoparticles for solar energy harvesting.
    Shibu ES; Sonoda A; Tao Z; Feng Q; Furube A; Masuo S; Wang L; Tamai N; Ishikawa M; Biju V
    ACS Nano; 2012 Feb; 6(2):1601-8. PubMed ID: 22260241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Blinking statistics of silicon quantum dots.
    Bruhn B; Valenta J; Sangghaleh F; Linnros J
    Nano Lett; 2011 Dec; 11(12):5574-80. PubMed ID: 22107270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Effect of hole transporting materials on photoluminescence of CdSe core/shell quantum dots].
    Qu YQ; Zhang QB; Jing PT; Sun YJ; Zeng QH; Zhang YL; Kong XG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3204-7. PubMed ID: 20210132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-blinking semiconductor colloidal quantum dots for biology, optoelectronics and quantum optics.
    Spinicelli P; Mahler B; Buil S; Quélin X; Dubertret B; Hermier JP
    Chemphyschem; 2009 Apr; 10(6):879-82. PubMed ID: 19294684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Memory in quantum dot blinking.
    Muñoz RN; Frazer L; Yuan G; Mulvaney P; Pollock FA; Modi K
    Phys Rev E; 2022 Jul; 106(1-1):014127. PubMed ID: 35974537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot.
    Osovsky R; Cheskis D; Kloper V; Sashchiuk A; Kroner M; Lifshitz E
    Phys Rev Lett; 2009 May; 102(19):197401. PubMed ID: 19518993
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrical control of single-photon emission in highly charged individual colloidal quantum dots.
    Morozov S; Pensa EL; Khan AH; Polovitsyn A; Cortés E; Maier SA; Vezzoli S; Moreels I; Sapienza R
    Sci Adv; 2020 Sep; 6(38):. PubMed ID: 32948584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.