These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 25549021)

  • 1. Nanocellulose-assisted formation of porous hematite nanostructures.
    Ivanova A; Fominykh K; Fattakhova-Rohlfing D; Zeller P; Döblinger M; Bein T
    Inorg Chem; 2015 Feb; 54(3):1129-35. PubMed ID: 25549021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring the morphology of mesoporous titania thin films through biotemplating with nanocrystalline cellulose.
    Ivanova A; Fattakhova-Rohlfing D; Kayaalp BE; Rathouský J; Bein T
    J Am Chem Soc; 2014 Apr; 136(16):5930-7. PubMed ID: 24533864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of hematite (alpha-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors.
    Wu C; Yin P; Zhu X; OuYang C; Xie Y
    J Phys Chem B; 2006 Sep; 110(36):17806-12. PubMed ID: 16956266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hematite (alpha-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties.
    Lian J; Duan X; Ma J; Peng P; Kim T; Zheng W
    ACS Nano; 2009 Nov; 3(11):3749-61. PubMed ID: 19877695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anodic nanotubular/porous hematite photoanode for solar water splitting: substantial effect of iron substrate purity.
    Lee CY; Wang L; Kado Y; Killian MS; Schmuki P
    ChemSusChem; 2014 Mar; 7(3):934-40. PubMed ID: 24677770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.
    Diab M; Mokari T
    Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flower-like porous hematite nanoarchitectures achieved by complexation-mediated oxidation-hydrolysis reaction.
    Huang X; Guan J; Xiao Z; Tong G; Mou F; Fan X
    J Colloid Interface Sci; 2011 May; 357(1):36-45. PubMed ID: 21353233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Templating Sol-Gel Hematite Films with Sacrificial Copper Oxide: Enhancing Photoanode Performance with Nanostructure and Oxygen Vacancies.
    Li Y; Guijarro N; Zhang X; Prévot MS; Jeanbourquin XA; Sivula K; Chen H; Li Y
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16999-7007. PubMed ID: 26186065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological transformation of hematite nanostructures during oxidation of iron.
    Yuan L; Cai R; Jang JI; Zhu W; Wang C; Wang Y; Zhou G
    Nanoscale; 2013 Aug; 5(16):7581-8. PubMed ID: 23838804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron insertion and hematite segregation on Fe-doped TiO2 nanoparticles obtained from sol-gel and hydrothermal methods.
    Santos Rda S; Faria GA; Giles C; Leite CA; Barbosa Hde S; Arruda MA; Longo C
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5555-61. PubMed ID: 23020290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ordered macroporous bimetallic nanostructures: design, characterization, and applications.
    Lu L; Eychmüller A
    Acc Chem Res; 2008 Feb; 41(2):244-53. PubMed ID: 18217722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-high capacitance hematite thin films with controlled nanoscopic morphologies.
    Liu J; Lee E; Kim YT; Kwon YU
    Nanoscale; 2014 Sep; 6(18):10643-9. PubMed ID: 25089016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron oxide nanopropellers prepared by a low-temperature solution approach.
    Yang WH; Lee CF; Tang HY; Shieh DB; Yeh CS
    J Phys Chem B; 2006 Jul; 110(29):14087-91. PubMed ID: 16854104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates.
    Korhonen JT; Hiekkataipale P; Malm J; Karppinen M; Ikkala O; Ras RH
    ACS Nano; 2011 Mar; 5(3):1967-74. PubMed ID: 21361349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ordered mesoporous α-Fe2O3 (hematite) thin-film electrodes for application in high rate rechargeable lithium batteries.
    Brezesinski K; Haetge J; Wang J; Mascotto S; Reitz C; Rein A; Tolbert SH; Perlich J; Dunn B; Brezesinski T
    Small; 2011 Feb; 7(3):407-14. PubMed ID: 21294271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of alumina on photocatalytic activity of iron oxides for bisphenol A degradation.
    Li FB; Li XZ; Liu CS; Liu TX
    J Hazard Mater; 2007 Oct; 149(1):199-207. PubMed ID: 17475402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of three-dimensional ordered hierarchically porous metal oxides via a hybridized epoxide assisted/colloidal crystal templating approach.
    Davis M; Ramirez DA; Hope-Weeks LJ
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7786-92. PubMed ID: 23926949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of quasi-single crystalline porous ZnO nanostructures with a single large cavity.
    Cho S; Kim S; Jung DW; Lee KH
    Nanoscale; 2011 Sep; 3(9):3841-8. PubMed ID: 21842089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertically oriented iron oxide films produced by hydrothermal process: effect of thermal treatment on the physical chemical properties.
    Ferraz LC; Carvalho WM; Criado D; Souza FL
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5515-23. PubMed ID: 22992121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.