These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

552 related articles for article (PubMed ID: 25549070)

  • 1. Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9.
    Bauer DE; Canver MC; Orkin SH
    J Vis Exp; 2015 Jan; (95):e52118. PubMed ID: 25549070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9 Technology in Translational Biomedicine.
    Leonova EI; Gainetdinov RR
    Cell Physiol Biochem; 2020 Apr; 54(3):354-370. PubMed ID: 32298553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precision genome editing in the CRISPR era.
    Salsman J; Dellaire G
    Biochem Cell Biol; 2017 Apr; 95(2):187-201. PubMed ID: 28177771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo blunt-end cloning through CRISPR/Cas9-facilitated non-homologous end-joining.
    Geisinger JM; Turan S; Hernandez S; Spector LP; Calos MP
    Nucleic Acids Res; 2016 May; 44(8):e76. PubMed ID: 26762978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient targeted chromosome deletions using CRISPR/Cas9.
    He Z; Proudfoot C; Mileham AJ; McLaren DG; Whitelaw CB; Lillico SG
    Biotechnol Bioeng; 2015 May; 112(5):1060-4. PubMed ID: 25362885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile and precise gene-targeting strategies for functional studies in mammalian cell lines.
    Wassef M; Luscan A; Battistella A; Le Corre S; Li H; Wallace MR; Vidaud M; Margueron R
    Methods; 2017 May; 121-122():45-54. PubMed ID: 28499832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.
    He X; Tan C; Wang F; Wang Y; Zhou R; Cui D; You W; Zhao H; Ren J; Feng B
    Nucleic Acids Res; 2016 May; 44(9):e85. PubMed ID: 26850641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks.
    Yang H; Ren S; Yu S; Pan H; Li T; Ge S; Zhang J; Xia N
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells.
    Hendel A; Bak RO; Clark JT; Kennedy AB; Ryan DE; Roy S; Steinfeld I; Lunstad BD; Kaiser RJ; Wilkens AB; Bacchetta R; Tsalenko A; Dellinger D; Bruhn L; Porteus MH
    Nat Biotechnol; 2015 Sep; 33(9):985-989. PubMed ID: 26121415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using a Fluorescent PCR-capillary Gel Electrophoresis Technique to Genotype CRISPR/Cas9-mediated Knockout Mutants in a High-throughput Format.
    Ramlee MK; Wang J; Cheung AMS; Li S
    J Vis Exp; 2017 Apr; (122):. PubMed ID: 28448034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9-Guided Genome Engineering in C. elegans.
    Kim HM; ColaiƔcovo MP
    Curr Protoc Mol Biol; 2016 Jul; 115():31.7.1-31.7.18. PubMed ID: 27366893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise and Predictable CRISPR Chromosomal Rearrangements Reveal Principles of Cas9-Mediated Nucleotide Insertion.
    Shou J; Li J; Liu Y; Wu Q
    Mol Cell; 2018 Aug; 71(4):498-509.e4. PubMed ID: 30033371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9.
    Li J; Shou J; Guo Y; Tang Y; Wu Y; Jia Z; Zhai Y; Chen Z; Xu Q; Wu Q
    J Mol Cell Biol; 2015 Aug; 7(4):284-98. PubMed ID: 25757625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of CRISPR/Cas9 genome editing to the study and treatment of disease.
    Pellagatti A; Dolatshad H; Valletta S; Boultwood J
    Arch Toxicol; 2015 Jul; 89(7):1023-34. PubMed ID: 25827103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells.
    Canver MC; Bauer DE; Dass A; Yien YY; Chung J; Masuda T; Maeda T; Paw BH; Orkin SH
    J Biol Chem; 2014 Aug; 289(31):21312-24. PubMed ID: 24907273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards mastering CRISPR-induced gene knock-in in plants: Survey of key features and focus on the model Physcomitrella patens.
    Collonnier C; Guyon-Debast A; Maclot F; Mara K; Charlot F; NoguƩ F
    Methods; 2017 May; 121-122():103-117. PubMed ID: 28478103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.
    Laughery MF; Hunter T; Brown A; Hoopes J; Ostbye T; Shumaker T; Wyrick JJ
    Yeast; 2015 Dec; 32(12):711-20. PubMed ID: 26305040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery.
    Lin S; Staahl BT; Alla RK; Doudna JA
    Elife; 2014 Dec; 3():e04766. PubMed ID: 25497837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection-dependent and Independent Generation of CRISPR/Cas9-mediated Gene Knockouts in Mammalian Cells.
    Sternburg EL; Dias KC; Karginov FV
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28654078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.