BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 25549153)

  • 1. Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures.
    Yu Y; Li J; Geng D; Wang J; Zhang L; Andrew TL; Arnold MS; Wang X
    ACS Nano; 2015 Jan; 9(1):564-72. PubMed ID: 25549153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced photovoltaic performance utilizing effective charge transfers and light scattering effects by the combination of mesoporous, hollow 3D-ZnO along with 1D-ZnO in CdS quantum dot sensitized solar cells.
    Chetia TR; Barpuzary D; Qureshi M
    Phys Chem Chem Phys; 2014 May; 16(20):9625-33. PubMed ID: 24730023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epitaxial 1D electron transport layers for high-performance perovskite solar cells.
    Han GS; Chung HS; Kim DH; Kim BJ; Lee JW; Park NG; Cho IS; Lee JK; Lee S; Jung HS
    Nanoscale; 2015 Oct; 7(37):15284-90. PubMed ID: 26324759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional TiO2/ZnO hybrid array as a heterostructured anode for efficient quantum-dot-sensitized solar cells.
    Feng HL; Wu WQ; Rao HS; Wan Q; Li LB; Kuang DB; Su CY
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5199-205. PubMed ID: 25679232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose nanofiber-templated three-dimension TiO2 hierarchical nanowire network for photoelectrochemical photoanode.
    Li Z; Yao C; Wang F; Cai Z; Wang X
    Nanotechnology; 2014 Dec; 25(50):504005. PubMed ID: 25426973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient one-dimensional ZnO nanowire-based dye-sensitized solar cell using a metal-free, D-π-A-type, carbazole derivative with more than 5% power conversion.
    Barpuzary D; Patra AS; Vaghasiya JV; Solanki BG; Soni SS; Qureshi M
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12629-39. PubMed ID: 25029665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Branched nanowire photoelectrochemical electrodes for efficient solar water splitting.
    Kargar A; Sun K; Jing Y; Choi C; Jeong H; Jung GY; Jin S; Wang D
    ACS Nano; 2013 Oct; 7(10):9407-15. PubMed ID: 24040832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational Strategies for Efficient Perovskite Solar Cells.
    Seo J; Noh JH; Seok SI
    Acc Chem Res; 2016 Mar; 49(3):562-72. PubMed ID: 26950188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced photovoltaic performance of nanowire dye-sensitized solar cells based on coaxial TiO2@TiO heterostructures with a cobalt(II/III) redox electrolyte.
    Fan J; Fàbrega C; Zamani RR; Hao Y; Parra A; Andreu T; Arbiol J; Boschloo G; Hagfeldt A; Morante JR; Cabot A
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):9872-7. PubMed ID: 24025444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays.
    Qiu J; Qiu Y; Yan K; Zhong M; Mu C; Yan H; Yang S
    Nanoscale; 2013 Apr; 5(8):3245-8. PubMed ID: 23508213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-sided brush-shaped TiO2 nanostructure assemblies with highly ordered nanowires for dye-sensitized solar cells.
    Zha C; Shen L; Zhang X; Wang Y; Korgel BA; Gupta A; Bao N
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):122-9. PubMed ID: 24354310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells.
    Chandiran AK; Abdi-Jalebi M; Nazeeruddin MK; Grätzel M
    ACS Nano; 2014 Mar; 8(3):2261-8. PubMed ID: 24552648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hole-conductor-free perovskite solar cells with carbon counter electrodes based on ZnO nanorod arrays.
    Wang BX; Liu TF; Zhou YB; Chen X; Yuan XB; Yang YY; Liu WP; Wang JM; Han HW; Tang YW
    Phys Chem Chem Phys; 2016 Oct; 18(39):27078-27082. PubMed ID: 27711679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition.
    Wang HW; Ting CF; Hung MK; Chiou CH; Liu YL; Liu Z; Ratinac KR; Ringer SP
    Nanotechnology; 2009 Feb; 20(5):055601. PubMed ID: 19417348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-State Mesostructured Perovskite CH3NH3PbI3 Solar Cells: Charge Transport, Recombination, and Diffusion Length.
    Zhao Y; Nardes AM; Zhu K
    J Phys Chem Lett; 2014 Feb; 5(3):490-4. PubMed ID: 26276597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation.
    Chang J; Kuga Y; Mora-Seró I; Toyoda T; Ogomi Y; Hayase S; Bisquert J; Shen Q
    Nanoscale; 2015 Mar; 7(12):5446-56. PubMed ID: 25732872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells.
    Li Y; Zhao Y; Chen Q; Yang YM; Liu Y; Hong Z; Liu Z; Hsieh YT; Meng L; Li Y; Yang Y
    J Am Chem Soc; 2015 Dec; 137(49):15540-7. PubMed ID: 26592525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer.
    Kim HS; Park NG
    J Phys Chem Lett; 2014 Sep; 5(17):2927-34. PubMed ID: 26278238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core-shell heterostructured metal oxide arrays enable superior light-harvesting and hysteresis-free mesoscopic perovskite solar cells.
    Mahmood K; Swain BS; Amassian A
    Nanoscale; 2015 Aug; 7(30):12812-9. PubMed ID: 26159238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recombination reduction on lead halide perovskite solar cells based on low temperature synthesized hierarchical TiO₂ nanorods.
    Jaramillo-Quintero OA; Solís de la Fuente M; Sanchez RS; Recalde IB; Juarez-Perez EJ; Rincón ME; Mora-Seró I
    Nanoscale; 2016 Mar; 8(12):6271-7. PubMed ID: 26616491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.