BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25549201)

  • 1. Assessing cerebral autoregulation via oscillatory lower body negative pressure and projection pursuit regression.
    Taylor JA; Tan CO; Hamner JW
    J Vis Exp; 2014 Dec; (94):. PubMed ID: 25549201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining the characteristic relationship between arterial pressure and cerebral flow.
    Tan CO
    J Appl Physiol (1985); 2012 Oct; 113(8):1194-200. PubMed ID: 22961266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of heat stress on dynamic cerebral autoregulation during large fluctuations in arterial blood pressure.
    Brothers RM; Zhang R; Wingo JE; Hubing KA; Crandall CG
    J Appl Physiol (1985); 2009 Dec; 107(6):1722-9. PubMed ID: 19797691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revisiting human cerebral blood flow responses to augmented blood pressure oscillations.
    Hamner JW; Ishibashi K; Tan CO
    J Physiol; 2019 Mar; 597(6):1553-1564. PubMed ID: 30633356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillatory lower body negative pressure impairs task related functional hyperemia in healthy volunteers.
    Stewart JM; Balakrishnan K; Visintainer P; Del Pozzi AT; Messer ZR; Terilli C; Medow MS
    Am J Physiol Heart Circ Physiol; 2016 Mar; 310(6):H775-84. PubMed ID: 26801310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral autoregulation is compromised during simulated fluctuations in gravitational stress.
    Brown CM; Dütsch M; Ohring S; Neundörfer B; Hilz MJ
    Eur J Appl Physiol; 2004 Mar; 91(2-3):279-86. PubMed ID: 14574578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral indices of human cerebral blood flow control: responses to augmented blood pressure oscillations.
    Hamner JW; Cohen MA; Mukai S; Lipsitz LA; Taylor JA
    J Physiol; 2004 Sep; 559(Pt 3):965-73. PubMed ID: 15254153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillatory lower body negative pressure impairs working memory task-related functional hyperemia in healthy volunteers.
    Merchant S; Medow MS; Visintainer P; Terilli C; Stewart JM
    Am J Physiol Heart Circ Physiol; 2017 Apr; 312(4):H672-H680. PubMed ID: 28159806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of myogenic mechanisms in human cerebrovascular regulation.
    Tan CO; Hamner JW; Taylor JA
    J Physiol; 2013 Oct; 591(20):5095-105. PubMed ID: 23959681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between blood pressure and cerebral blood flow during supine cycling: influence of aging.
    Smirl JD; Hoffman K; Tzeng YC; Hansen A; Ainslie PN
    J Appl Physiol (1985); 2016 Mar; 120(5):552-63. PubMed ID: 26586907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear assessment of cerebral autoregulation from spontaneous blood pressure and cerebral blood flow fluctuations.
    Hu K; Peng CK; Czosnyka M; Zhao P; Novak V
    Cardiovasc Eng; 2008 Mar; 8(1):60-71. PubMed ID: 18080758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-Linear Characterisation of Cerebral Pressure-Flow Dynamics in Humans.
    Saleem S; Teal PD; Kleijn WB; O'Donnell T; Witter T; Tzeng YC
    PLoS One; 2015; 10(9):e0139470. PubMed ID: 26421429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral hemodynamics during orthostatic stress assessed by nonlinear modeling.
    Mitsis GD; Zhang R; Levine BD; Marmarelis VZ
    J Appl Physiol (1985); 2006 Jul; 101(1):354-66. PubMed ID: 16514006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validity and reliability of deriving the autoregulatory plateau through projection pursuit regression from driven methods.
    Burma JS; Griffiths JK; Smirl JD
    Physiol Rep; 2024 Jan; 12(2):e15919. PubMed ID: 38262711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of cerebral blood velocity and tissue oxygenation to low-frequency oscillations during simulated haemorrhagic stress in humans.
    Anderson GK; Sprick JD; Park FS; Rosenberg AJ; Rickards CA
    Exp Physiol; 2019 Aug; 104(8):1190-1201. PubMed ID: 31090115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral blood flow response to cardiorespiratory oscillations in healthy humans.
    Holme NLA; Zilakos I; Elstad M; Skytioti M
    Auton Neurosci; 2023 Mar; 245():103069. PubMed ID: 36584666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling between arterial pressure, cerebral blood velocity, and cerebral tissue oxygenation with spontaneous and forced oscillations.
    Rickards CA; Sprick JD; Colby HB; Kay VL; Tzeng YC
    Physiol Meas; 2015 Apr; 36(4):785-801. PubMed ID: 25798890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methodological comparison of active- and passive-driven oscillations in blood pressure; implications for the assessment of cerebral pressure-flow relationships.
    Smirl JD; Hoffman K; Tzeng YC; Hansen A; Ainslie PN
    J Appl Physiol (1985); 2015 Sep; 119(5):487-501. PubMed ID: 26183476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral autoregulatory response depends on the direction of change in perfusion pressure.
    Schmidt B; Klingelhöfer J; Perkes I; Czosnyka M
    J Neurotrauma; 2009 May; 26(5):651-6. PubMed ID: 19281414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency response characteristics of cerebral blood flow autoregulation in rats.
    Kolb B; Rotella DL; Stauss HM
    Am J Physiol Heart Circ Physiol; 2007 Jan; 292(1):H432-8. PubMed ID: 16963612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.