BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25549201)

  • 21. Relative contributions of systemic hemodynamic variables to cerebral autoregulation during orthostatic stress.
    Yoshida H; Hamner JW; Ishibashi K; Tan CO
    J Appl Physiol (1985); 2018 Feb; 124(2):321-329. PubMed ID: 29025902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of cerebrovascular and cardiovascular responses to lower body negative pressure as a test of cerebral autoregulation.
    Brown CM; Dütsch M; Hecht MJ; Neundörfer B; Hilz MJ
    J Neurol Sci; 2003 Apr; 208(1-2):71-8. PubMed ID: 12639728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Directional sensitivity of the cerebral pressure-flow relationship during forced oscillations induced by oscillatory lower body negative pressure.
    Labrecque L; Roy MA; Soleimani Dehnavi S; Taghizadeh M; Smirl JD; Brassard P
    J Cereb Blood Flow Metab; 2024 Apr; ():271678X241247633. PubMed ID: 38613236
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monitoring of cerebral blood flow autoregulation: physiologic basis, measurement, and clinical implications.
    Vu EL; Brown CH; Brady KM; Hogue CW
    Br J Anaesth; 2024 Jun; 132(6):1260-1273. PubMed ID: 38471987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduced cerebral blood flow velocity and impaired cerebral autoregulation in patients with Fabry disease.
    Hilz MJ; Kolodny EH; Brys M; Stemper B; Haendl T; Marthol H
    J Neurol; 2004 May; 251(5):564-70. PubMed ID: 15164189
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Endotoxemia reduces cerebral perfusion but enhances dynamic cerebrovascular autoregulation at reduced arterial carbon dioxide tension.
    Brassard P; Kim YS; van Lieshout J; Secher NH; Rosenmeier JB
    Crit Care Med; 2012 Jun; 40(6):1873-8. PubMed ID: 22610190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cardiovascular and cerebrovascular responses to lower body negative pressure in type 2 diabetic patients.
    Marthol H; Zikeli U; Brown CM; Tutaj M; Hilz MJ
    J Neurol Sci; 2007 Jan; 252(2):99-105. PubMed ID: 17173934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcranial Doppler assessment of cerebral autoregulation.
    Bellapart J; Fraser JF
    Ultrasound Med Biol; 2009 Jun; 35(6):883-93. PubMed ID: 19329245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data.
    Depreitere B; Güiza F; Van den Berghe G; Schuhmann MU; Maier G; Piper I; Meyfroidt G
    J Neurosurg; 2014 Jun; 120(6):1451-7. PubMed ID: 24745709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cardiovascular regulation in humans in response to oscillatory lower body negative pressure.
    Levenhagen DK; Evans JM; Wang M; Knapp CF
    Am J Physiol; 1994 Aug; 267(2 Pt 2):H593-604. PubMed ID: 8067416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deterioration of cerebral autoregulation during orthostatic stress: insights from the frequency domain.
    Zhang R; Zuckerman JH; Levine BD
    J Appl Physiol (1985); 1998 Sep; 85(3):1113-22. PubMed ID: 9729590
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of mild orthostatic stress on aortic-cerebral hemodynamic transmission: insight from the frequency domain.
    Sugawara J; Tomoto T; Imai T; Maeda S; Ogoh S
    Am J Physiol Heart Circ Physiol; 2017 May; 312(5):H1076-H1084. PubMed ID: 28258058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spontaneous fluctuations in cerebral blood flow: insights from extended-duration recordings in humans.
    Zhang R; Zuckerman JH; Levine BD
    Am J Physiol Heart Circ Physiol; 2000 Jun; 278(6):H1848-55. PubMed ID: 10843881
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multimodality monitoring during passive tilt and Valsalva maneuver under hypercapnia.
    Hetzel A; Braune S; Guschlbauer B; Dohms K; Prasse A; Lücking CH
    J Neuroimaging; 1999 Apr; 9(2):108-12. PubMed ID: 10208109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The frequency response of cerebral autoregulation.
    Fraser CD; Brady KM; Rhee CJ; Easley RB; Kibler K; Smielewski P; Czosnyka M; Kaczka DW; Andropoulos DB; Rusin C
    J Appl Physiol (1985); 2013 Jul; 115(1):52-6. PubMed ID: 23681909
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of cerebrovascular autoregulation: changes of highest modal frequency of cerebrovascular pressure transmission with cerebral perfusion pressure.
    Daley ML; Pourcyrous M; Timmons SD; Leffler CW
    Stroke; 2004 Aug; 35(8):1952-6. PubMed ID: 15205491
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Testing impact of perinatal inflammation on cerebral autoregulation in preterm neonates: evaluation of a noninvasive method.
    Hahn GH
    Dan Med J; 2013 Apr; 60(4):B4628. PubMed ID: 23651728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Meaning of Intracranial Pressure-to-Blood Pressure Fisher-Transformed Pearson Correlation-Derived Optimal Cerebral Perfusion Pressure: Testing Empiric Utility in a Mechanistic Model.
    Akhondi-Asl A; Vonberg FW; Au CC; Tasker RC
    Crit Care Med; 2018 Dec; 46(12):e1160-e1166. PubMed ID: 30239383
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relative contributions of sympathetic, cholinergic, and myogenic mechanisms to cerebral autoregulation.
    Hamner JW; Tan CO
    Stroke; 2014 Jun; 45(6):1771-7. PubMed ID: 24723314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.