These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25549253)

  • 1. Arsenic efflux from Microcystis aeruginosa under different phosphate regimes.
    Yan C; Wang Z; Luo Z
    PLoS One; 2014; 9(12):e116099. PubMed ID: 25549253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic uptake and depuration kinetics in Microcystis aeruginosa under different phosphate regimes.
    Wang Z; Luo Z; Yan C; Che F; Yan Y
    J Hazard Mater; 2014 Jul; 276():393-9. PubMed ID: 24922097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic speciation and effect of arsenate inhibition in a Microcystis aeruginosa culture medium under different phosphate regimes.
    Guo P; Gong Y; Wang C; Liu X; Liu J
    Environ Toxicol Chem; 2011 Aug; 30(8):1754-9. PubMed ID: 21560143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of arsenate on microcystin content and leakage of Microcystis strain PCC7806 under various phosphate regimes.
    Gong Y; Song L; Wu X; Xiao B; Fang T; Liu J
    Environ Toxicol; 2009 Feb; 24(1):87-94. PubMed ID: 18442067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa.
    Wang Z; Luo Z; Yan C
    Environ Sci Pollut Res Int; 2013 Oct; 20(10):7286-95. PubMed ID: 23636594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes.
    Wang NX; Li Y; Deng XH; Miao AJ; Ji R; Yang LY
    Water Res; 2013 May; 47(7):2497-506. PubMed ID: 23497978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of environmental factors on arsenate biotransformation and release in Microcystis aeruginosa using the Taguchi experimental design approach.
    Wang Z; Luo Z; Yan C; Xing B
    Water Res; 2017 Jul; 118():167-176. PubMed ID: 28431349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Response of
    Wang ZH; Zhang HP; Luo ZX
    Huan Jing Ke Xue; 2016 Jul; 37(7):2570-2576. PubMed ID: 29964464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenate biotransformation by Microcystis aeruginosa under different nitrogen and phosphorus levels.
    Che F; Du M; Yan C
    J Environ Sci (China); 2018 Apr; 66():41-49. PubMed ID: 29628107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into toxic effects of arsenate on four Microcystis species under different phosphorus regimes.
    Luo Z; Wang Z; Liu A; Yan Y; Wu Y; Zhang X
    Environ Sci Pollut Res Int; 2020 Dec; 27(35):44460-44469. PubMed ID: 32770468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the conversion of dissolved organic phosphorus favors algal bloom, arsenate biotransformation and microcystins release of Microcystis aeruginosa.
    Zhang X; Wang Z; Luo Z; Chen Y; Huang X
    J Environ Sci (China); 2023 Mar; 125():205-214. PubMed ID: 36375906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissolved organic phosphorus enhances arsenate bioaccumulation and biotransformation in Microcystis aeruginosa.
    Wang Z; Gui H; Luo Z; Zhen Z; Yan C; Xing B
    Environ Pollut; 2019 Sep; 252(Pt B):1755-1763. PubMed ID: 31295694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp.
    Bahar MM; Megharaj M; Naidu R
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2663-8. PubMed ID: 26438364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics.
    Hatayama M; Sato T; Shinoda K; Inoue C
    J Biosci Bioeng; 2011 Mar; 111(3):326-32. PubMed ID: 21185228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing arsenate metabolism in Microcystis aeruginosa and relieving risks of arsenite and microcystins by nano-Fe
    Xu F; Wang Z; Chen Y; Luo Y; Luo Z
    Environ Pollut; 2023 Aug; 330():121801. PubMed ID: 37169240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid biotransformation of arsenate into oxo-arsenosugars by a freshwater unicellular green alga, Chlamydomonas reinhardtii.
    Miyashita S; Fujiwara S; Tsuzuki M; Kaise T
    Biosci Biotechnol Biochem; 2011; 75(3):522-30. PubMed ID: 21389618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Titanium dioxide nanoparticles enhance inorganic arsenic bioavailability and methylation in two freshwater algae species.
    Luo Z; Wang Z; Yan Y; Li J; Yan C; Xing B
    Environ Pollut; 2018 Jul; 238():631-637. PubMed ID: 29614472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of phosphorus in the metabolism of arsenate by a freshwater green alga, Chlorella vulgaris.
    Baker J; Wallschläger D
    J Environ Sci (China); 2016 Nov; 49():169-178. PubMed ID: 28007172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The distribution of arsenate and arsenite in shoots and roots of Holcus lanatus is influenced by arsenic tolerance and arsenate and phosphate supply.
    Quaghebeur M; Rengel Z
    Plant Physiol; 2003 Jul; 132(3):1600-9. PubMed ID: 12857839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton (Chlorella sp. CE-35).
    Rahman MA; Hogan B; Duncan E; Doyle C; Krassoi R; Rahman MM; Naidu R; Lim RP; Maher W; Hassler C
    Ecotoxicol Environ Saf; 2014 Aug; 106():126-35. PubMed ID: 24836887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.