BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 2554947)

  • 1. Fate of ATP in secretory granules: phosphohydrolase studies in pancreatic vascular bed.
    Böck P
    Arch Histol Cytol; 1989; 52 Suppl():85-90. PubMed ID: 2554947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of zymogen granules from rat pancreas and characterization of their membrane proteins.
    Pâquet MR; St-Jean P; Roberge M; Beaudoin AR
    Eur J Cell Biol; 1982 Aug; 28(1):20-6. PubMed ID: 6290220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topographical and planar distribution of Helix pomatia lectin-binding glycoconjugates in secretory granules and plasma membrane of pancreatic exocrine acinar cells of the rat: demonstration of membrane heterogeneity.
    Kan FW; Bendayan M
    Am J Anat; 1989; 185(2-3):165-76. PubMed ID: 2672769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The origin of the zymogen granule membrane of the pancreatic acinar cell as examined by ultrastructural cytochemistry of acid phosphatase, thiamine pyrophosphatase, and ATP-diphosphohydrolase activities.
    Beaudoin AR; Grondin G; Lord A; Roberge M; St-Jean P
    Eur J Cell Biol; 1983 Jan; 29(2):218-25. PubMed ID: 6131821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca-dependent ADPase--the possible regulator of calcium channel during the deficiency of ATP.
    Vrbjar N; Ziegelhoffer A
    Biomed Biochim Acta; 1987; 46(8-9):S399-402. PubMed ID: 2449185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of paraneurons by labelling with quinacrine (Atebrin).
    Böck P
    Arch Histol Jpn; 1980 Feb; 43(1):35-44. PubMed ID: 6105855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pancreatic membrane protein GP-2 localizes specifically to secretory granules and is shed into the pancreatic juice as a protein aggregate.
    Rindler MJ; Hoops TC
    Eur J Cell Biol; 1990 Oct; 53(1):154-63. PubMed ID: 2076702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alkaline phosphatase, 5'-nucleotidase and magnesium-dependent adenosine triphosphatase activities in the transitional epithelium of the rat urinary bladder.
    Zhang SX; Kobayashi T; Okada T; García del Saz E; Seguchi H
    Histol Histopathol; 1991 Jul; 6(3):309-15. PubMed ID: 1667277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A histochemical study of variations in the localization of 5'-nucleotidase activity in the acinar cell of the rat exocrine pancreas over the twenty-four hour period.
    Uchiyama Y
    Cell Tissue Res; 1983; 230(2):411-20. PubMed ID: 6303596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between the release of the sympathetic neurotransmitter ATP and soluble nucleotidases from the guinea pig vas deferens.
    Mihaylova-Todorova S; Todorov LD; Westfall DP
    J Pharmacol Exp Ther; 2001 Jan; 296(1):64-70. PubMed ID: 11123363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secretory granule growth hormone and prolactin release: independence from granule membrane ATPase.
    Lorenson MY; Jacobs LS
    Endocrinology; 1984 Mar; 114(3):717-24. PubMed ID: 6230223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of secretion granules in the Golgi apparatus of pancreatic acinar cells of the rat.
    Rambourg A; Clermont Y; Hermo L
    Am J Anat; 1988 Nov; 183(3):187-99. PubMed ID: 2850745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in surface membrane ecto-ATPase and ecto-AMPase in normal and malignant cells. I. Decrease in ecto-ATPase in myeloid leukemic cells and the independent regulation of ecto-ATPase and ecto-AMPase.
    Weiss B; Sachs L
    J Cell Physiol; 1977 Nov; 93(2):183-8. PubMed ID: 145444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochemical localization of beta-NADPase and TMPase in B cells of pancreas.
    Beaudoin AR; Grondin G
    Int J Pancreatol; 1989 Mar; 4(2):199-205. PubMed ID: 2542420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The effect of ATP analogues on ATPase and phosphatase activities of Na+, K+-ATPase for duck salt glands].
    Lopina OD; Balanova LA; Manokhina EA
    Ukr Biokhim Zh (1978); 1985; 57(2):19-24. PubMed ID: 2988168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulated secretion of mature cathepsin B from rat exocrine pancreatic cells.
    Tooze J; Hollinshead M; Hensel G; Kern HF; Hoflack B
    Eur J Cell Biol; 1991 Dec; 56(2):187-200. PubMed ID: 1802707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The ectophosphatase activity of cultured endothelial cells of calf aorta and the effect of drugs on ecto-ATPase].
    Melzig M; Michalski H; Teuscher E
    Biomed Biochim Acta; 1989; 48(7):431-6. PubMed ID: 2553007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of anti-Thy1 nephritis in the rat by adenine nucleotides. Evidence for an anti-inflammatory role for nucleotidases.
    Poelstra K; Heynen ER; Baller JF; Hardonk MJ; Bakker WW
    Lab Invest; 1992 May; 66(5):555-63. PubMed ID: 1533430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of arterial and venous segments of blood vessels using alkaline phosphatase staining of ink/gelatin injected tissues.
    Ushiki T; Abe K
    Arch Histol Cytol; 1998 Aug; 61(3):215-9. PubMed ID: 9756098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Cytochemical study of Mg2(+)-ATPase and ALPase activity in human meningiomas].
    Ogashiwa M; Nishiyama F; Fukai K; Takeuchi K; Hirano H
    No To Shinkei; 1990 May; 42(5):497-503. PubMed ID: 2144982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.