BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 25549622)

  • 1. Probing C-terminal interactions of the Pseudomonas stutzeri cyanide-degrading CynD protein.
    Crum MA; Park JM; Mulelu AE; Sewell BT; Benedik MJ
    Appl Microbiol Biotechnol; 2015 Apr; 99(7):3093-102. PubMed ID: 25549622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-terminal hybrid mutant of Bacillus pumilus cyanide dihydratase dramatically enhances thermal stability and pH tolerance by reinforcing oligomerization.
    Crum MA; Park JM; Sewell BT; Benedik MJ
    J Appl Microbiol; 2015 Apr; 118(4):881-9. PubMed ID: 25597384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of cyanide-degrading nitrilases.
    Jandhyala DM; Willson RC; Sewell BT; Benedik MJ
    Appl Microbiol Biotechnol; 2005 Aug; 68(3):327-35. PubMed ID: 15703908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyanide hydratases and cyanide dihydratases: emerging tools in the biodegradation and biodetection of cyanide.
    Martínková L; Veselá AB; Rinágelová A; Chmátal M
    Appl Microbiol Biotechnol; 2015 Nov; 99(21):8875-82. PubMed ID: 26329848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oligomeric structure of nitrilases: effect of mutating interfacial residues on activity.
    Sewell BT; Thuku RN; Zhang X; Benedik MJ
    Ann N Y Acad Sci; 2005 Nov; 1056():153-9. PubMed ID: 16387684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residue Y70 of the Nitrilase Cyanide Dihydratase from
    Park JM; Ponder CM; Sewell BT; Benedik MJ
    J Microbiol Biotechnol; 2016 Dec; 26(12):2179-2183. PubMed ID: 27586531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CynD, the cyanide dihydratase from Bacillus pumilus: gene cloning and structural studies.
    Jandhyala D; Berman M; Meyers PR; Sewell BT; Willson RC; Benedik MJ
    Appl Environ Microbiol; 2003 Aug; 69(8):4794-805. PubMed ID: 12902273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterologous expression of mitochondria-targeted microbial nitrilase enzymes increases cyanide tolerance in Arabidopsis.
    Molojwane E; Adams N; Sweetlove LJ; Ingle RA
    Plant Biol (Stuttg); 2015 Jul; 17(4):922-6. PubMed ID: 25711239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanide-degrading nitrilases in nature.
    Benedik MJ; Sewell BT
    J Gen Appl Microbiol; 2018 May; 64(2):90-93. PubMed ID: 29311498
    [No Abstract]   [Full Text] [Related]  

  • 10. The cyanide hydratase from Neurospora crassa forms a helix which has a dimeric repeat.
    Dent KC; Weber BW; Benedik MJ; Sewell BT
    Appl Microbiol Biotechnol; 2009 Feb; 82(2):271-8. PubMed ID: 18946669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering pH-tolerant mutants of a cyanide dihydratase.
    Wang L; Watermeyer JM; Mulelu AE; Sewell BT; Benedik MJ
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):131-40. PubMed ID: 21993481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new family of carbon-nitrogen hydrolases.
    Bork P; Koonin EV
    Protein Sci; 1994 Aug; 3(8):1344-6. PubMed ID: 7987228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome mining of cyanide-degrading nitrilases from filamentous fungi.
    Basile LJ; Willson RC; Sewell BT; Benedik MJ
    Appl Microbiol Biotechnol; 2008 Sep; 80(3):427-35. PubMed ID: 18587571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of different carboxy-terminal mutations on the substrate-, reaction- and enantiospecificity of the arylacetonitrilase from Pseudomonas fluorescens EBC191.
    Kiziak C; Klein J; Stolz A
    Protein Eng Des Sel; 2007 Aug; 20(8):385-96. PubMed ID: 17693456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cyanide hydratase enzyme of Fusarium lateritium also has nitrilase activity.
    Nolan LM; Harnedy PA; Turner P; Hearne AB; O'Reilly C
    FEMS Microbiol Lett; 2003 Apr; 221(2):161-5. PubMed ID: 12725921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic Characterization of
    Justo Arevalo S; Zapata Sifuentes D; Cuba Portocarrero A; Brescia Reátegui M; Monge Pimentel C; Farage Martins L; Marques Pierry P; Morais Piroupo C; Guerra Santa Cruz A; Quiñones Aguilar M; Shaker Farah C; Setubal JC; da Silva AM
    Appl Environ Microbiol; 2022 Jul; 88(14):e0091622. PubMed ID: 35762789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyanide bioremediation: the potential of engineered nitrilases.
    Park JM; Trevor Sewell B; Benedik MJ
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3029-3042. PubMed ID: 28265723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of nitrilases identified by genome mining.
    Kaplan O; Veselá AB; Petříčková A; Pasquarelli F; Pičmanová M; Rinágelová A; Bhalla TC; Pátek M; Martínková L
    Mol Biotechnol; 2013 Jul; 54(3):996-1003. PubMed ID: 23475593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cyanide degrading nitrilase from Pseudomonas stutzeri AK61 is a two-fold symmetric, 14-subunit spiral.
    Sewell BT; Berman MN; Meyers PR; Jandhyala D; Benedik MJ
    Structure; 2003 Nov; 11(11):1413-22. PubMed ID: 14604531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidation of the role of Ser329 and the C-terminal region in the catalytic activity of Pseudomonas stutzeri L-rhamnose isomerase.
    Yoshida H; Takeda K; Izumori K; Kamitori S
    Protein Eng Des Sel; 2010 Dec; 23(12):919-27. PubMed ID: 20977999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.