These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 25549771)

  • 1. Modeling Cerebral Blood Flow Velocity During Orthostatic Stress.
    Mader G; Olufsen M; Mahdi A
    Ann Biomed Eng; 2015 Aug; 43(8):1748-58. PubMed ID: 25549771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebral blood flow responses to severe orthostatic stress in fit and unfit young and older adults.
    Franke WD; Allbee KA; Spencer SE
    Gerontology; 2006; 52(5):282-9. PubMed ID: 16974099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation.
    Olufsen MS; Ottesen JT; Tran HT; Ellwein LM; Lipsitz LA; Novak V
    J Appl Physiol (1985); 2005 Oct; 99(4):1523-37. PubMed ID: 15860687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of hypocapnia and the cerebral autoregulatory response on cerebrovascular resistance and apparent zero flow pressure during isoflurane anesthesia.
    McCulloch TJ; Turner MJ
    Anesth Analg; 2009 Apr; 108(4):1284-90. PubMed ID: 19299801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High spontaneous fluctuation in arterial blood pressure improves the assessment of cerebral autoregulation.
    Liu J; Simpson DM; Allen R
    Physiol Meas; 2005 Oct; 26(5):725-41. PubMed ID: 16088064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unconstrained parameter estimation for assessment of dynamic cerebral autoregulation.
    Chacón M; Nuñez N; Henríquez C; Panerai RB
    Physiol Meas; 2008 Oct; 29(10):1179-93. PubMed ID: 18799835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human cerebral autoregulation before, during and after spaceflight.
    Iwasaki K; Levine BD; Zhang R; Zuckerman JH; Pawelczyk JA; Diedrich A; Ertl AC; Cox JF; Cooke WH; Giller CA; Ray CA; Lane LD; Buckey JC; Baisch FJ; Eckberg DL; Robertson D; Biaggioni I; Blomqvist CG
    J Physiol; 2007 Mar; 579(Pt 3):799-810. PubMed ID: 17185344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visually evoked blood flow responses and interaction with dynamic cerebral autoregulation: correction for blood pressure variation.
    Gommer ED; Bogaarts G; Martens EG; Mess WH; Reulen JP
    Med Eng Phys; 2014 May; 36(5):613-9. PubMed ID: 24507691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous cerebral autoregulation monitoring by cross-correlation analysis.
    Steinmeier R; Hofmann RP; Bauhuf C; Hübner U; Fahlbusch R
    J Neurotrauma; 2002 Oct; 19(10):1127-38. PubMed ID: 12427323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A conceptual model for CO₂-induced redistribution of cerebral blood flow with experimental confirmation using BOLD MRI.
    Sobczyk O; Battisti-Charbonney A; Fierstra J; Mandell DM; Poublanc J; Crawley AP; Mikulis DJ; Duffin J; Fisher JA
    Neuroimage; 2014 May; 92():56-68. PubMed ID: 24508647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of cerebral blood flow autoregulation in neonates.
    Panerai RB; Kelsall AW; Rennie JM; Evans DH
    IEEE Trans Biomed Eng; 1996 Aug; 43(8):779-88. PubMed ID: 9216150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autonomic dysfunction affects dynamic cerebral autoregulation during Valsalva maneuver: comparison between healthy and autonomic dysfunction subjects.
    Castro PM; Santos R; Freitas J; Panerai RB; Azevedo E
    J Appl Physiol (1985); 2014 Aug; 117(3):205-13. PubMed ID: 24925980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral hemodynamics during orthostatic stress assessed by nonlinear modeling.
    Mitsis GD; Zhang R; Levine BD; Marmarelis VZ
    J Appl Physiol (1985); 2006 Jul; 101(1):354-66. PubMed ID: 16514006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-linear multivariate modeling of cerebral hemodynamics with autoregressive Support Vector Machines.
    Chacon M; Araya C; Panerai RB
    Med Eng Phys; 2011 Mar; 33(2):180-7. PubMed ID: 21051271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mimicking of cerebral autoregulation by flow-dependent cerebrovascular resistance: a feasibility study.
    Kaufmann TA; Wong KC; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2012 Apr; 36(4):E97-101. PubMed ID: 22372981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimising the assessment of cerebral autoregulation from black box models.
    Angarita-Jaimes N; Kouchakpour H; Liu J; Panerai RB; Simpson DM
    Med Eng Phys; 2014 May; 36(5):607-12. PubMed ID: 24508528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined transfer function analysis and modelling of cerebral autoregulation.
    Payne SJ; Tarassenko L
    Ann Biomed Eng; 2006 May; 34(5):847-58. PubMed ID: 16708269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebral blood flow velocity during mental activation: interpretation with different models of the passive pressure-velocity relationship.
    Panerai RB; Moody M; Eames PJ; Potter JF
    J Appl Physiol (1985); 2005 Dec; 99(6):2352-62. PubMed ID: 16099892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral autoregulation: from models to clinical applications.
    Panerai RB
    Cardiovasc Eng; 2008 Mar; 8(1):42-59. PubMed ID: 18041584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear modeling of the dynamic effects of arterial pressure and CO2 variations on cerebral blood flow in healthy humans.
    Mitsis GD; Poulin MJ; Robbins PA; Marmarelis VZ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1932-43. PubMed ID: 15536895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.