These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25549773)

  • 1. Biocompatible Optically Transparent MEMS for Micromechanical Stimulation and Multimodal Imaging of Living Cells.
    Fior R; Kwok J; Malfatti F; Sbaizero O; Lal R
    Ann Biomed Eng; 2015 Aug; 43(8):1841-50. PubMed ID: 25549773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanochannel system fabricated by MEMS microfabrication and atomic force microscopy.
    Wang Z; Wang D; Jiao N; Tung S; Dong Z
    IET Nanobiotechnol; 2011 Dec; 5(4):108-13. PubMed ID: 22149865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlative fluorescence and atomic force microscopy to advance the bio-physical characterisation of co-culture of living cells.
    Moura CC; Miranda A; Oreffo ROC; De Beule PAA
    Biochem Biophys Res Commun; 2020 Aug; 529(2):392-397. PubMed ID: 32703441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial displacements in response to nanomechanical forces.
    Silberberg YR; Pelling AE; Yakubov GE; Crum WR; Hawkes DJ; Horton MA
    J Mol Recognit; 2008; 21(1):30-6. PubMed ID: 18247356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic force-multi-optical imaging integrated microscope for monitoring molecular dynamics in live cells.
    Trache A; Meininger GA
    J Biomed Opt; 2005; 10(6):064023. PubMed ID: 16409088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfabricated nanotopological surfaces for study of adhesion-dependent cell mechanosensitivity.
    Chen W; Sun Y; Fu J
    Small; 2013 Jan; 9(1):81-9. PubMed ID: 22887768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomechanical Induction of Autophagy-Related Fluorescence in Single Cells with Atomic Force Microscopy.
    Li B; Wei Y; Li Q; Chen N; Li J; Liu L; Zhang J; Wang Y; Sun Y; Shi J; Wang L; Shao Z; Hu J; Fan C
    Adv Sci (Weinh); 2021 Dec; 8(24):e2102989. PubMed ID: 34708576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement techniques for cellular biomechanics in vitro.
    Addae-Mensah KA; Wikswo JP
    Exp Biol Med (Maywood); 2008 Jul; 233(7):792-809. PubMed ID: 18445766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between cell stiffness and stress fiber amount, assessed by simultaneous atomic force microscopy and live-cell fluorescence imaging.
    Gavara N; Chadwick RS
    Biomech Model Mechanobiol; 2016 Jun; 15(3):511-23. PubMed ID: 26206449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Live cell response to mechanical stimulation studied by integrated optical and atomic force microscopy.
    Trache A; Lim SM
    J Vis Exp; 2010 Oct; (44):. PubMed ID: 20972405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotribology and nanomechanics in nano/biotechnology.
    Bhushan B
    Philos Trans A Math Phys Eng Sci; 2008 May; 366(1870):1499-537. PubMed ID: 18192166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropy vs isotropy in living cell indentation with AFM.
    Efremov YM; Velay-Lizancos M; Weaver CJ; Athamneh AI; Zavattieri PD; Suter DM; Raman A
    Sci Rep; 2019 Apr; 9(1):5757. PubMed ID: 30962474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining atomic force-fluorescence microscopy with a stretching device for analyzing mechanotransduction processes in living cells.
    Hecht E; Knittel P; Felder E; Dietl P; Mizaikoff B; Kranz C
    Analyst; 2012 Nov; 137(22):5208-14. PubMed ID: 22977882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined AFM and confocal fluorescence microscope for applications in bio-nanotechnology.
    Kassies R; van der Werf KO; Lenferink A; Hunter CN; Olsen JD; Subramaniam V; Otto C
    J Microsc; 2005 Jan; 217(Pt 1):109-16. PubMed ID: 15655068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale optomechanical actuators for controlling mechanotransduction in living cells.
    Liu Z; Liu Y; Chang Y; Seyf HR; Henry A; Mattheyses AL; Yehl K; Zhang Y; Huang Z; Salaita K
    Nat Methods; 2016 Feb; 13(2):143-6. PubMed ID: 26657558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy.
    Kilpatrick JI; Revenko I; Rodriguez BJ
    Adv Healthc Mater; 2015 Nov; 4(16):2456-74. PubMed ID: 26200464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotribology-based novel characterization techniques for the dielectric charging failure mechanism in electrostatically actuated NEMS/MEMS devices using force-distance curve measurements.
    Zaghloul U; Bhushan B; Papaioannou G; Coccetti F; Pons P; Plana R
    J Colloid Interface Sci; 2012 Jan; 365(1):236-53. PubMed ID: 21962432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of intracellular mitochondrial displacements in response to nanomechanical forces.
    Silberberg YR; Pelling AE
    Methods Mol Biol; 2013; 991():185-93. PubMed ID: 23546670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical sensing of the penetration of various nanoneedles into a living cell using atomic force microscopy.
    Obataya I; Nakamura C; Han S; Nakamura N; Miyake J
    Biosens Bioelectron; 2005 Feb; 20(8):1652-5. PubMed ID: 15626623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction to Atomic Force Microscopy (AFM) in Biology.
    Kreplak L
    Curr Protoc Protein Sci; 2016 Aug; 85():17.7.1-17.7.21. PubMed ID: 27479503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.