These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 25549791)
21. Mesoporous silica nanoparticles: A multifunctional nano therapeutic system. Mai WX; Meng H Integr Biol (Camb); 2013 Jan; 5(1):19-28. PubMed ID: 23042147 [TBL] [Abstract][Full Text] [Related]
22. Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: current progress and opportunities. Waite CL; Roth CM Crit Rev Biomed Eng; 2012; 40(1):21-41. PubMed ID: 22428797 [TBL] [Abstract][Full Text] [Related]
23. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. Jang SC; Kim OY; Yoon CM; Choi DS; Roh TY; Park J; Nilsson J; Lötvall J; Kim YK; Gho YS ACS Nano; 2013 Sep; 7(9):7698-710. PubMed ID: 24004438 [TBL] [Abstract][Full Text] [Related]
24. Spindle-like polypyrrole hollow nanocapsules as multifunctional platforms for highly effective chemo-photothermal combination therapy of cancer cells in vivo. Wang Y; Xiao Y; Tang R Chemistry; 2014 Sep; 20(37):11826-34. PubMed ID: 25077695 [TBL] [Abstract][Full Text] [Related]
25. Recent Patents on Nanoparticles and Nanoformulations for Cancer Therapy. Ray A; Mandal A; Joseph M; Mitra AK Recent Pat Drug Deliv Formul; 2016; 10(1):11-23. PubMed ID: 26282464 [TBL] [Abstract][Full Text] [Related]
26. Magnetic nanoparticle-based drug delivery for cancer therapy. Tietze R; Zaloga J; Unterweger H; Lyer S; Friedrich RP; Janko C; Pöttler M; Dürr S; Alexiou C Biochem Biophys Res Commun; 2015 Dec; 468(3):463-70. PubMed ID: 26271592 [TBL] [Abstract][Full Text] [Related]
27. Optimization of drug delivery systems for intraperitoneal therapy to extend the residence time of the chemotherapeutic agent. De Smet L; Ceelen W; Remon JP; Vervaet C ScientificWorldJournal; 2013; 2013():720858. PubMed ID: 23589707 [TBL] [Abstract][Full Text] [Related]
28. Bioinspired Nano-Prodrug with Enhanced Tumor Targeting and Increased Therapeutic Efficiency. Chen WH; Lei Q; Yang CX; Jia HZ; Luo GF; Wang XY; Liu G; Cheng SX; Zhang XZ Small; 2015 Oct; 11(39):5230-42. PubMed ID: 26285687 [TBL] [Abstract][Full Text] [Related]
29. Smart doxorubicin nanoparticles with high drug payload for enhanced chemotherapy against drug resistance and cancer diagnosis. Yu C; Zhou M; Zhang X; Wei W; Chen X; Zhang X Nanoscale; 2015 Mar; 7(13):5683-90. PubMed ID: 25740312 [TBL] [Abstract][Full Text] [Related]
30. Silica-based nanocapsules: synthesis, structure control and biomedical applications. Zhang Y; Hsu BY; Ren C; Li X; Wang J Chem Soc Rev; 2015 Jan; 44(1):315-35. PubMed ID: 25310644 [TBL] [Abstract][Full Text] [Related]
31. A pH-responsive chitosan-b-poly(p-dioxanone) nanocarrier: formation and efficient antitumor drug delivery. Tang DL; Song F; Chen C; Wang XL; Wang YZ Nanotechnology; 2013 Apr; 24(14):145101. PubMed ID: 23481178 [TBL] [Abstract][Full Text] [Related]
33. The self-assembling camptothecin-tocopherol prodrug: An effective approach for formulating camptothecin. Lu J; Liu C; Wang P; Ghazwani M; Xu J; Huang Y; Ma X; Zhang P; Li S Biomaterials; 2015 Sep; 62():176-87. PubMed ID: 26057133 [TBL] [Abstract][Full Text] [Related]
34. Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles. Cheng YJ; Luo GF; Zhu JY; Xu XD; Zeng X; Cheng DB; Li YM; Wu Y; Zhang XZ; Zhuo RX; He F ACS Appl Mater Interfaces; 2015 May; 7(17):9078-87. PubMed ID: 25893819 [TBL] [Abstract][Full Text] [Related]
35. Nanocarriers for the targeted treatment of ovarian cancers. Tomasina J; Lheureux S; Gauduchon P; Rault S; Malzert-Fréon A Biomaterials; 2013 Jan; 34(4):1073-101. PubMed ID: 23174141 [TBL] [Abstract][Full Text] [Related]
36. Nano- and micro-encapsulated systems for enhancing the delivery of resveratrol. Augustin MA; Sanguansri L; Lockett T Ann N Y Acad Sci; 2013 Jul; 1290():107-12. PubMed ID: 23855472 [TBL] [Abstract][Full Text] [Related]
37. Balancing the effect of corona on therapeutic efficacy and macrophage uptake of lipid nanocapsules. Sánchez-Moreno P; Buzón P; Boulaiz H; Peula-García JM; Ortega-Vinuesa JL; Luque I; Salvati A; Marchal JA Biomaterials; 2015 Aug; 61():266-78. PubMed ID: 26005765 [TBL] [Abstract][Full Text] [Related]
38. The role of nanotechnology in prostate cancer theranostic applications. Cherian AM; Nair SV; Lakshmanan VK J Nanosci Nanotechnol; 2014 Jan; 14(1):841-52. PubMed ID: 24730302 [TBL] [Abstract][Full Text] [Related]
39. A modified double-emulsion method for the preparation of daunorubicin-loaded polymeric nanoparticle with enhanced in vitro anti-tumor activity. Liu J; Qiu Z; Wang S; Zhou L; Zhang S Biomed Mater; 2010 Dec; 5(6):065002. PubMed ID: 20924138 [TBL] [Abstract][Full Text] [Related]
40. Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells. Hu K; Zhou H; Liu Y; Liu Z; Liu J; Tang J; Li J; Zhang J; Sheng W; Zhao Y; Wu Y; Chen C Nanoscale; 2015 May; 7(18):8607-18. PubMed ID: 25898852 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]