These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25550154)

  • 41. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering.
    Igwe JC; Mikael PE; Nukavarapu SP
    J Tissue Eng Regen Med; 2014 Feb; 8(2):131-42. PubMed ID: 22689304
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrospun silk-BMP-2 scaffolds for bone tissue engineering.
    Li C; Vepari C; Jin HJ; Kim HJ; Kaplan DL
    Biomaterials; 2006 Jun; 27(16):3115-24. PubMed ID: 16458961
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simvastatin coating of TiO₂ scaffold induces osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells.
    Pullisaar H; Reseland JE; Haugen HJ; Brinchmann JE; Ostrup E
    Biochem Biophys Res Commun; 2014 Apr; 447(1):139-44. PubMed ID: 24704451
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MicroRNA delivery for regenerative medicine.
    Peng B; Chen Y; Leong KW
    Adv Drug Deliv Rev; 2015 Jul; 88():108-22. PubMed ID: 26024978
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydroxyapatite incorporated into collagen gels for mesenchymal stem cell culture.
    Laydi F; Rahouadj R; Cauchois G; Stoltz JF; de Isla N
    Biomed Mater Eng; 2013; 23(4):311-5. PubMed ID: 23798652
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel route in bone tissue engineering: magnetic biomimetic scaffolds.
    Bock N; Riminucci A; Dionigi C; Russo A; Tampieri A; Landi E; Goranov VA; Marcacci M; Dediu V
    Acta Biomater; 2010 Mar; 6(3):786-96. PubMed ID: 19788946
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration.
    Alamein MA; Stephens S; Liu Q; Skabo S; Warnke PH
    Tissue Eng Part C Methods; 2013 Jun; 19(6):458-72. PubMed ID: 23102268
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mesenchymal stromal cell-derived extracellular matrix influences gene expression of chondrocytes.
    Thakkar S; Ghebes CA; Ahmed M; Kelder C; van Blitterswijk CA; Saris D; Fernandes HA; Moroni L
    Biofabrication; 2013 Jun; 5(2):025003. PubMed ID: 23443652
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds.
    Huang YX; Ren J; Chen C; Ren TB; Zhou XY
    J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A physiologically relevant 3D collagen-based scaffold-neuroblastoma cell system exhibits chemosensitivity similar to orthotopic xenograft models.
    Curtin C; Nolan JC; Conlon R; Deneweth L; Gallagher C; Tan YJ; Cavanagh BL; Asraf AZ; Harvey H; Miller-Delaney S; Shohet J; Bray I; O'Brien FJ; Stallings RL; Piskareva O
    Acta Biomater; 2018 Apr; 70():84-97. PubMed ID: 29447961
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neocartilage formation from mesenchymal stem cells grown in type II collagen-hyaluronan composite scaffolds.
    Yeh HY; Lin TY; Lin CH; Yen BL; Tsai CL; Hsu SH
    Differentiation; 2013; 86(4-5):171-83. PubMed ID: 24462469
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Non-viral gene-activated matrices: next generation constructs for bone repair.
    Tierney EG; Duffy GP; Cryan SA; Curtin CM; O'Brien FJ
    Organogenesis; 2013; 9(1):22-8. PubMed ID: 23538777
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MicroRNAs delivery into human cells grown on 3D-printed PLA scaffolds coated with a novel fluorescent PAMAM dendrimer for biomedical applications.
    Paolini A; Leoni L; Giannicchi I; Abbaszadeh Z; D'Oria V; Mura F; Dalla Cort A; Masotti A
    Sci Rep; 2018 Sep; 8(1):13888. PubMed ID: 30224665
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Scaffold-Based microRNA Therapies in Regenerative Medicine and Cancer.
    Curtin CM; Castaño IM; O'Brien FJ
    Adv Healthc Mater; 2018 Jan; 7(1):. PubMed ID: 29068566
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MicroRNAs in skin tissue engineering.
    Miller KJ; Brown DA; Ibrahim MM; Ramchal TD; Levinson H
    Adv Drug Deliv Rev; 2015 Jul; 88():16-36. PubMed ID: 25953499
    [TBL] [Abstract][Full Text] [Related]  

  • 56. RNA-based scaffolds for bone regeneration: application and mechanisms of mRNA, miRNA and siRNA.
    Leng Q; Chen L; Lv Y
    Theranostics; 2020; 10(7):3190-3205. PubMed ID: 32194862
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects.
    Zhang X; Li Y; Chen YE; Chen J; Ma PX
    Nat Commun; 2016 Jan; 7():10376. PubMed ID: 26765931
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Three-dimensional In Vitro Biomimetic Model of Neuroblastoma using Collagen-based Scaffolds.
    Gallagher C; Murphy C; O'Brien FJ; Piskareva O
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34309593
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Immunomodulatory properties of stem cells and bioactive molecules for tissue engineering.
    Molina ER; Smith BT; Shah SR; Shin H; Mikos AG
    J Control Release; 2015 Dec; 219():107-118. PubMed ID: 26307349
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Long chain microRNA conjugates in calcium phosphate nanoparticles for efficient formulation and delivery.
    Jung H; Kim SA; Yang YG; Yoo H; Lim SJ; Mok H
    Arch Pharm Res; 2015; 38(5):705-15. PubMed ID: 25052958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.