These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
564 related articles for article (PubMed ID: 25550286)
1. Discrete stochastic metapopulation model with arbitrarily distributed infectious period. Hernandez-Ceron N; Chavez-Casillas JA; Feng Z Math Biosci; 2015 Mar; 261():74-82. PubMed ID: 25550286 [TBL] [Abstract][Full Text] [Related]
2. An Edge-Based Model of SEIR Epidemics on Static Random Networks. Alota CP; Pilar-Arceo CPC; de Los Reyes V AA Bull Math Biol; 2020 Jul; 82(7):96. PubMed ID: 32676740 [TBL] [Abstract][Full Text] [Related]
3. The distribution of the time taken for an epidemic to spread between two communities. Yan AWC; Black AJ; McCaw JM; Rebuli N; Ross JV; Swan AJ; Hickson RI Math Biosci; 2018 Sep; 303():139-147. PubMed ID: 30089576 [TBL] [Abstract][Full Text] [Related]
4. A Network Epidemic Model with Preventive Rewiring: Comparative Analysis of the Initial Phase. Britton T; Juher D; Saldaña J Bull Math Biol; 2016 Dec; 78(12):2427-2454. PubMed ID: 27800576 [TBL] [Abstract][Full Text] [Related]
5. SIR dynamics in random networks with communities. Li J; Wang J; Jin Z J Math Biol; 2018 Oct; 77(4):1117-1151. PubMed ID: 29752517 [TBL] [Abstract][Full Text] [Related]
6. The influence of assumptions on generation time distributions in epidemic models. Svensson Å Math Biosci; 2015 Dec; 270(Pt A):81-9. PubMed ID: 26477379 [TBL] [Abstract][Full Text] [Related]
7. Simple Approximations for Epidemics with Exponential and Fixed Infectious Periods. Fowler AC; Hollingsworth TD Bull Math Biol; 2015 Aug; 77(8):1539-55. PubMed ID: 26337289 [TBL] [Abstract][Full Text] [Related]
8. Analysis of a stochastic SIR epidemic on a random network incorporating household structure. Ball F; Sirl D; Trapman P Math Biosci; 2010 Apr; 224(2):53-73. PubMed ID: 20005881 [TBL] [Abstract][Full Text] [Related]
9. Estimating the within-household infection rate in emerging SIR epidemics among a community of households. Ball F; Shaw L J Math Biol; 2015 Dec; 71(6-7):1705-35. PubMed ID: 25820343 [TBL] [Abstract][Full Text] [Related]
10. Random migration processes between two stochastic epidemic centers. Sazonov I; Kelbert M; Gravenor MB Math Biosci; 2016 Apr; 274():45-57. PubMed ID: 26877075 [TBL] [Abstract][Full Text] [Related]
11. A theta-scheme approximation of basic reproduction number for an age-structured epidemic system in a finite horizon. Guo WJ; Ye M; Li XN; Meyer-Baese A; Zhang QM Math Biosci Eng; 2019 May; 16(5):4107-4121. PubMed ID: 31499653 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of Multi-stage Infections on Networks. Sherborne N; Blyuss KB; Kiss IZ Bull Math Biol; 2015 Oct; 77(10):1909-33. PubMed ID: 26403422 [TBL] [Abstract][Full Text] [Related]
13. Model for disease dynamics of a waterborne pathogen on a random network. Li M; Ma J; van den Driessche P J Math Biol; 2015 Oct; 71(4):961-77. PubMed ID: 25326654 [TBL] [Abstract][Full Text] [Related]
14. The basic reproduction number and the probability of extinction for a dynamic epidemic model. Neal P Math Biosci; 2012 Mar; 236(1):31-5. PubMed ID: 22269870 [TBL] [Abstract][Full Text] [Related]
15. Reproduction numbers for epidemic models with households and other social structures II: Comparisons and implications for vaccination. Ball F; Pellis L; Trapman P Math Biosci; 2016 Apr; 274():108-39. PubMed ID: 26845663 [TBL] [Abstract][Full Text] [Related]
16. Continuous and discrete SIR-models with spatial distributions. Paeng SH; Lee J J Math Biol; 2017 Jun; 74(7):1709-1727. PubMed ID: 27796478 [TBL] [Abstract][Full Text] [Related]
17. Multi-patch and multi-group epidemic models: a new framework. Bichara D; Iggidr A J Math Biol; 2018 Jul; 77(1):107-134. PubMed ID: 29149377 [TBL] [Abstract][Full Text] [Related]
18. Effects of stochastic perturbation on the SIS epidemic system. Lahrouz A; Settati A; Akharif A J Math Biol; 2017 Jan; 74(1-2):469-498. PubMed ID: 27289475 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of an ultra-discrete SIR epidemic model with time delay. Sekiguchi M; Ishiwata E; Nakata Y Math Biosci Eng; 2018 Jun; 15(3):653-666. PubMed ID: 30380324 [TBL] [Abstract][Full Text] [Related]
20. An exact and implementable computation of the final outbreak size distribution under Erlang distributed infectious period. İşlier ZG; Güllü R; Hörmann W Math Biosci; 2020 Jul; 325():108363. PubMed ID: 32360771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]