These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 2555072)
41. DNA adduction by phenol, hydroquinone, or benzoquinone in vitro but not in vivo: nuclease P1-enhanced 32P-postlabeling of adducts as labeled nucleoside bisphosphates, dinucleotides and nucleoside monophosphates. Reddy MV; Bleicher WT; Blackburn GR; Mackerer CR Carcinogenesis; 1990 Aug; 11(8):1349-57. PubMed ID: 2387021 [TBL] [Abstract][Full Text] [Related]
42. Cell-specific activation and detoxification of benzene metabolites in mouse and human bone marrow: identification of target cells and a potential role for modulation of apoptosis in benzene toxicity. Ross D; Siegel D; Schattenberg DG; Sun XM; Moran JL Environ Health Perspect; 1996 Dec; 104 Suppl 6(Suppl 6):1177-82. PubMed ID: 9118890 [TBL] [Abstract][Full Text] [Related]
43. Inhibition of RNA synthesis and interleukin-2 production in lymphocytes in vitro by benzene and its metabolites, hydroquinone and p-benzoquinone. Post GB; Snyder R; Kalf GF Toxicol Lett; 1985 Dec; 29(2-3):161-7. PubMed ID: 2418539 [TBL] [Abstract][Full Text] [Related]
44. Inhibitory effect of benzene metabolites on nuclear DNA synthesis in bone marrow cells. Lee EW; Johnson JT; Garner CD J Toxicol Environ Health; 1989; 26(3):277-91. PubMed ID: 2926830 [TBL] [Abstract][Full Text] [Related]
45. Activation of microsomal glutathione transferase activity by reactive intermediates formed during the metabolism of phenol. Wallin H; Morgenstern R Chem Biol Interact; 1990; 75(2):185-99. PubMed ID: 2369785 [TBL] [Abstract][Full Text] [Related]
46. Benzene metabolism by reconstituted cytochromes P450 2B1 and 2E1 and its modulation by cytochrome b5, microsomal epoxide hydrolase, and glutathione transferases: evidence for an important role of microsomal epoxide hydrolase in the formation of hydroquinone. Snyder R; Chepiga T; Yang CS; Thomas H; Platt K; Oesch F Toxicol Appl Pharmacol; 1993 Oct; 122(2):172-81. PubMed ID: 8211999 [TBL] [Abstract][Full Text] [Related]
47. Metabolic activation of PCBs to quinones: reactivity toward nitrogen and sulfur nucleophiles and influence of superoxide dismutase. Amaro AR; Oakley GG; Bauer U; Spielmann HP; Robertson LW Chem Res Toxicol; 1996; 9(3):623-9. PubMed ID: 8728508 [TBL] [Abstract][Full Text] [Related]
48. Inhibition of interleukin-12 production in mouse macrophages by hydroquinone, a reactive metabolite of benzene, via suppression of nuclear factor-kappaB binding activity. Kim E; Kang BY; Kim TS Immunol Lett; 2005 Jun; 99(1):24-9. PubMed ID: 15894107 [TBL] [Abstract][Full Text] [Related]
49. Role for interleukin-1 (IL-1) in benzene-induced hematotoxicity: inhibition of conversion of pre-IL-1 alpha to mature cytokine in murine macrophages by hydroquinone and prevention of benzene-induced hematotoxicity in mice by IL-1 alpha. Renz JF; Kalf GF Blood; 1991 Aug; 78(4):938-44. PubMed ID: 1868253 [TBL] [Abstract][Full Text] [Related]
50. Inhibition of interferon-alpha/beta induction in L-929 cells by benzene and benzene metabolites. Cheung SC; Nerland DE; Sonnenfeld G Oncology; 1989; 46(5):335-8. PubMed ID: 2779948 [TBL] [Abstract][Full Text] [Related]
51. Benzene and phenol metabolism by mouse and rat liver microsomes. Schlosser PM; Bond JA; Medinsky MA Carcinogenesis; 1993 Dec; 14(12):2477-86. PubMed ID: 8269615 [TBL] [Abstract][Full Text] [Related]
52. T cell-dependent immune reactions to reactive benzene metabolites in mice. Ewens S; Wulferink M; Goebel C; Gleichmann E Arch Toxicol; 1999; 73(3):159-67. PubMed ID: 10401682 [TBL] [Abstract][Full Text] [Related]
53. Macrophage regulation of myelopoiesis is altered by exposure to the benzene metabolite hydroquinone. Thomas DJ; Reasor MJ; Wierda D Toxicol Appl Pharmacol; 1989 Mar; 97(3):440-53. PubMed ID: 2609342 [TBL] [Abstract][Full Text] [Related]
54. Stimulation of in vitro bioactivation of hydroquinone by phenol in bone marrow cells. Subrahmanyam V; Sadler A; Suba E; Ross D Drug Metab Dispos; 1989; 17(3):348-50. PubMed ID: 2568920 [No Abstract] [Full Text] [Related]
55. DT-diaphorase and peroxidase influence the covalent binding of the metabolites of phenol, the major metabolite of benzene. Smart RC; Zannoni VG Mol Pharmacol; 1984 Jul; 26(1):105-11. PubMed ID: 6749127 [TBL] [Abstract][Full Text] [Related]
56. Prostaglandin synthase and horseradish peroxidase catalyzed DNA-binding of p-phenetidine. Andersson B; Larsson R; Rahimtula A; Moldéus P Carcinogenesis; 1984 Feb; 5(2):161-5. PubMed ID: 6421501 [TBL] [Abstract][Full Text] [Related]
57. Hydroquinone stimulates granulocyte-macrophage progenitor cells in vitro and in vivo. Henschler R; Glatt HR; Heyworth CM Environ Health Perspect; 1996 Dec; 104 Suppl 6(Suppl 6):1271-4. PubMed ID: 9118904 [TBL] [Abstract][Full Text] [Related]
58. Oxidation of hydroquinones by the versatile ligninolytic peroxidase from Pleurotus eryngii. H2O2 generation and the influence of Mn2+. Gómez-Toribio V; Martínez AT; Martínez MJ; Guillén F Eur J Biochem; 2001 Sep; 268(17):4787-93. PubMed ID: 11532015 [TBL] [Abstract][Full Text] [Related]
59. Effect of methoxy-p-benzoquinones and methoxy-p-hydroquinones on DNA synthesis in Ehrlich ascites tumor cells. Esterbauer H; Pölsler G; Fodor G Acta Biochim Biophys Hung; 1987; 22(2-3):195-204. PubMed ID: 3118625 [TBL] [Abstract][Full Text] [Related]
60. Metabolic activation of phenol by human myeloperoxidase and horseradish peroxidase. Eastmond DA; Smith MT; Ruzo LO; Ross D Mol Pharmacol; 1986 Dec; 30(6):674-9. PubMed ID: 3023815 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]