These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 25551136)

  • 1. Computational investigation of cicada aerodynamics in forward flight.
    Wan H; Dong H; Gai K
    J R Soc Interface; 2015 Jan; 12(102):20141116. PubMed ID: 25551136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight.
    Wang J; Ren Y; Li C; Dong H
    Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near- and far-field aerodynamics in insect hovering flight: an integrated computational study.
    Aono H; Liang F; Liu H
    J Exp Biol; 2008 Jan; 211(Pt 2):239-57. PubMed ID: 18165252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird.
    Song J; Luo H; Hedrick TL
    J R Soc Interface; 2014 Sep; 11(98):20140541. PubMed ID: 25008082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers.
    Muijres FT; Bowlin MS; Johansson LC; Hedenström A
    J R Soc Interface; 2012 Feb; 9(67):292-303. PubMed ID: 21676971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bat flight: aerodynamics, kinematics and flight morphology.
    Hedenström A; Johansson LC
    J Exp Biol; 2015 Mar; 218(Pt 5):653-63. PubMed ID: 25740899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ground effect on the aerodynamics of three-dimensional hovering wings.
    Lu H; Lua KB; Lee YJ; Lim TT; Yeo KS
    Bioinspir Biomim; 2016 Oct; 11(6):066003. PubMed ID: 27780156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wing-wake interaction: comparison of 2D and 3D flapping wings in hover flight.
    Lee YJ; Lua KB
    Bioinspir Biomim; 2018 Sep; 13(6):066003. PubMed ID: 30132443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional vortex wake structure of flapping wings in hovering flight.
    Cheng B; Roll J; Liu Y; Troolin DR; Deng X
    J R Soc Interface; 2014 Feb; 11(91):20130984. PubMed ID: 24335561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the vortex wake in hovering Anna's hummingbirds (Calypte anna).
    Wolf M; Ortega-Jimenez VM; Dudley R
    Proc Biol Sci; 2013 Dec; 280(1773):20132391. PubMed ID: 24174113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lift calculations based on accepted wake models for animal flight are inconsistent and sensitive to vortex dynamics.
    Gutierrez E; Quinn DB; Chin DD; Lentink D
    Bioinspir Biomim; 2016 Dec; 12(1):016004. PubMed ID: 27921999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wing kinematics measurement and aerodynamics of a dragonfly in turning flight.
    Li C; Dong H
    Bioinspir Biomim; 2017 Feb; 12(2):026001. PubMed ID: 28059781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Canonical description of wing kinematics and dynamics for a straight flying insectivorous bat (Hipposideros pratti).
    Sekhar S; Windes P; Fan X; Tafti DK
    PLoS One; 2019; 14(6):e0218672. PubMed ID: 31237912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leading edge vortex in a slow-flying passerine.
    Muijres FT; Johansson LC; Hedenström A
    Biol Lett; 2012 Aug; 8(4):554-7. PubMed ID: 22417792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leading-edge curvature effect on aerodynamic performance of flapping wings in hover and forward flight.
    Addo-Akoto R; Han JS; Han JH
    Bioinspir Biomim; 2024 Jul; 19(5):. PubMed ID: 38955342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.
    Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ
    J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerodynamic characteristics along the wing span of a dragonfly
    Hefler C; Qiu H; Shyy W
    J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30108128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the leading edge vortex in lift augmentation of steadily revolving wings: a change in perspective.
    Nabawy MRA; Crowther WJ
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28747395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerodynamics and flow features of a damselfly in takeoff flight.
    Bode-Oke AT; Zeyghami S; Dong H
    Bioinspir Biomim; 2017 Sep; 12(5):056006. PubMed ID: 28699620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.