These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25551177)

  • 1. Plant pathogenic bacteria target the actin microfilament network involved in the trafficking of disease defense components.
    Jelenska J; Kang Y; Greenberg JT
    Bioarchitecture; 2014; 4(4-5):149-53. PubMed ID: 25551177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HopW1 from Pseudomonas syringae disrupts the actin cytoskeleton to promote virulence in Arabidopsis.
    Kang Y; Jelenska J; Cecchini NM; Li Y; Lee MW; Kovar DR; Greenberg JT
    PLoS Pathog; 2014 Jun; 10(6):e1004232. PubMed ID: 24968323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arabidopsis proteins important for modulating defense responses to Pseudomonas syringae that secrete HopW1-1.
    Lee MW; Jelenska J; Greenberg JT
    Plant J; 2008 May; 54(3):452-65. PubMed ID: 18266921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arabidopsis actin-depolymerizing factor AtADF4 mediates defense signal transduction triggered by the Pseudomonas syringae effector AvrPphB.
    Tian M; Chaudhry F; Ruzicka DR; Meagher RB; Staiger CJ; Day B
    Plant Physiol; 2009 Jun; 150(2):815-24. PubMed ID: 19346440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Pseudomonas syringae Type III Effector HopG1 Induces Actin Remodeling to Promote Symptom Development and Susceptibility during Infection.
    Shimono M; Lu YJ; Porter K; Kvitko BH; Henty-Ridilla J; Creason A; He SY; Chang JH; Staiger CJ; Day B
    Plant Physiol; 2016 Jul; 171(3):2239-55. PubMed ID: 27217495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudomonas syringae evades phagocytosis by animal cells via type III effector-mediated regulation of actin filament plasticity.
    Yoon SJ; Park YJ; Kim JS; Lee S; Lee SH; Choi S; Min JK; Choi I; Ryu CM
    Environ Microbiol; 2018 Nov; 20(11):3980-3991. PubMed ID: 30251365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The plant actin cytoskeleton responds to signals from microbe-associated molecular patterns.
    Henty-Ridilla JL; Shimono M; Li J; Chang JH; Day B; Staiger CJ
    PLoS Pathog; 2013; 9(4):e1003290. PubMed ID: 23593000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pathogen-actin connection: a platform for defense signaling in plants.
    Day B; Henty JL; Porter KJ; Staiger CJ
    Annu Rev Phytopathol; 2011; 49():483-506. PubMed ID: 21495845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Pseudomonas syringae type III effector HopD1 suppresses effector-triggered immunity, localizes to the endoplasmic reticulum, and targets the Arabidopsis transcription factor NTL9.
    Block A; Toruño TY; Elowsky CG; Zhang C; Steinbrenner J; Beynon J; Alfano JR
    New Phytol; 2014 Mar; 201(4):1358-1370. PubMed ID: 24329768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Cytoskeleton in Plant Immunity: Dynamics, Regulation, and Function.
    Wang J; Lian N; Zhang Y; Man Y; Chen L; Yang H; Lin J; Jing Y
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Evaluation of Plant Actin Cytoskeletal Organization During Immune Signaling.
    Lu YJ; Day B
    Methods Mol Biol; 2017; 1578():207-221. PubMed ID: 28220427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arabidopsis Actin-Depolymerizing Factor-4 links pathogen perception, defense activation and transcription to cytoskeletal dynamics.
    Porter K; Shimono M; Tian M; Day B
    PLoS Pathog; 2012; 8(11):e1003006. PubMed ID: 23144618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From filaments to function: The role of the plant actin cytoskeleton in pathogen perception, signaling and immunity.
    Porter K; Day B
    J Integr Plant Biol; 2016 Apr; 58(4):299-311. PubMed ID: 26514830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actin depolymerization is able to increase plant resistance against pathogens via activation of salicylic acid signalling pathway.
    Leontovyčová H; Kalachova T; Trdá L; Pospíchalová R; Lamparová L; Dobrev PI; Malínská K; Burketová L; Valentová O; Janda M
    Sci Rep; 2019 Jul; 9(1):10397. PubMed ID: 31320662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interconnection between actin cytoskeleton and plant defense signaling.
    Janda M; Matoušková J; Burketová L; Valentová O
    Plant Signal Behav; 2014; 9(11):e976486. PubMed ID: 25482795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Evaluation of Stomatal Cytoskeletal Patterns during the Activation of Immune Signaling in Arabidopsis thaliana.
    Shimono M; Higaki T; Kaku H; Shibuya N; Hasezawa S; Day B
    PLoS One; 2016; 11(7):e0159291. PubMed ID: 27415815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profilin Negatively Regulates Formin-Mediated Actin Assembly to Modulate PAMP-Triggered Plant Immunity.
    Sun H; Qiao Z; Chua KP; Tursic A; Liu X; Gao YG; Mu Y; Hou X; Miao Y
    Curr Biol; 2018 Jun; 28(12):1882-1895.e7. PubMed ID: 29861135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis calcium-dependent protein kinase 3 regulates actin cytoskeleton organization and immunity.
    Lu YJ; Li P; Shimono M; Corrion A; Higaki T; He SY; Day B
    Nat Commun; 2020 Dec; 11(1):6234. PubMed ID: 33277490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct Biochemical Properties of Arabidopsis thaliana Actin Isoforms.
    Kijima ST; Hirose K; Kong SG; Wada M; Uyeda TQ
    Plant Cell Physiol; 2016 Jan; 57(1):46-56. PubMed ID: 26578694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding Cytoskeletal Dynamics During the Plant Immune Response.
    Li J; Staiger CJ
    Annu Rev Phytopathol; 2018 Aug; 56():513-533. PubMed ID: 29975609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.