BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 25551250)

  • 21. Intrauterine growth restriction and later cardiovascular function.
    Crispi F; Crovetto F; Gratacos E
    Early Hum Dev; 2018 Nov; 126():23-27. PubMed ID: 30206007
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prenatal food restriction induces poor-quality articular cartilage in female rat offspring fed a post-weaning high-fat diet and its intra-uterine programming mechanisms.
    Tan Y; Wu Y; Ni Q; Deng Y; Li J; Wang L; Shen L; Liu Y; Magdalou J; Wang H; Chen L
    Br J Nutr; 2016 Oct; 116(8):1346-1355. PubMed ID: 27680963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nutritional mismatch in postnatal life of low birth weight rat offspring leads to increased phosphorylation of hepatic eukaryotic initiation factor 2 α in adulthood.
    Sohi G; Revesz A; Hardy DB
    Metabolism; 2013 Oct; 62(10):1367-74. PubMed ID: 23768545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fetal growth restriction and consequences for the offspring in animal models.
    Holemans K; Aerts L; Van Assche FA
    J Soc Gynecol Investig; 2003 Oct; 10(7):392-9. PubMed ID: 14519479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Early and late postnatal myocardial and vascular changes in a protein restriction rat model of intrauterine growth restriction.
    Menendez-Castro C; Fahlbusch F; Cordasic N; Amann K; Münzel K; Plank C; Wachtveitl R; Rascher W; Hilgers KF; Hartner A
    PLoS One; 2011; 6(5):e20369. PubMed ID: 21655297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Perinatal and long-term effects of maternal uterine artery adenoviral VEGF-A165 gene therapy in the growth-restricted guinea pig fetus.
    Vaughan OR; Rossi CA; Ginsberg Y; White A; Hristova M; Sebire NJ; Martin J; Zachary IC; Peebles DM; David AL
    Am J Physiol Regul Integr Comp Physiol; 2018 Aug; 315(2):R344-R353. PubMed ID: 29847165
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Models of Intrauterine growth restriction and fetal programming in rabbits.
    Lopez-Tello J; Arias-Alvarez M; Gonzalez-Bulnes A; Sferuzzi-Perri AN
    Mol Reprod Dev; 2019 Dec; 86(12):1781-1809. PubMed ID: 31538701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early postnatal overfeeding induces early chronic renal dysfunction in adult male rats.
    Boubred F; Daniel L; Buffat C; Feuerstein JM; Tsimaratos M; Oliver C; Dignat-George F; Lelièvre-Pégorier M; Simeoni U
    Am J Physiol Renal Physiol; 2009 Oct; 297(4):F943-51. PubMed ID: 19656908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bone marrow mesenchymal stem cells of the intrauterine growth-restricted rat offspring exhibit enhanced adipogenic phenotype.
    Gong M; Antony S; Sakurai R; Liu J; Iacovino M; Rehan VK
    Int J Obes (Lond); 2016 Nov; 40(11):1768-1775. PubMed ID: 27599633
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Postnatal somatic growth and insulin contents in moderate or severe intrauterine growth retardation in the rat.
    Garofano A; Czernichow P; Bréant B
    Biol Neonate; 1998; 73(2):89-98. PubMed ID: 9483301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduction of In Vivo Placental Amino Acid Transport Precedes the Development of Intrauterine Growth Restriction in the Non-Human Primate.
    Rosario FJ; Kramer A; Li C; Galan HL; Powell TL; Nathanielsz PW; Jansson T
    Nutrients; 2021 Aug; 13(8):. PubMed ID: 34445051
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intrauterine growth restriction influences vascular remodeling and stiffening in the weanling rat more than sex or diet.
    Dodson RB; Miller TA; Powers K; Yang Y; Yu B; Albertine KH; Zinkhan EK
    Am J Physiol Heart Circ Physiol; 2017 Feb; 312(2):H250-H264. PubMed ID: 27881387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maternal Protein Restriction Increases Autophagy in the Pancreas of Newborn Rats.
    Yang M; Zhang D; Li Y; Xin Y
    J Nutr Sci Vitaminol (Tokyo); 2020; 66(2):168-175. PubMed ID: 32350178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effect of different early nutritional interventions on catch-up growth of rats with intrauterine growth retardation].
    Qiu XS; Huang TT; Shen ZY; Deng HY; Ke ZY; Mei KY; Lai F
    Zhonghua Er Ke Za Zhi; 2004 Oct; 42(10):782-6. PubMed ID: 16221353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prevention of early postnatal hyperalimentation protects against activation of transforming growth factor-β/bone morphogenetic protein and interleukin-6 signaling in rat lungs after intrauterine growth restriction.
    Alcázar MA; Dinger K; Rother E; Östreicher I; Vohlen C; Plank C; Dötsch J
    J Nutr; 2014 Dec; 144(12):1943-51. PubMed ID: 25411031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth.
    Tarry-Adkins JL; Fernandez-Twinn DS; Hargreaves IP; Neergheen V; Aiken CE; Martin-Gronert MS; McConnell JM; Ozanne SE
    Am J Clin Nutr; 2016 Feb; 103(2):579-88. PubMed ID: 26718412
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein or energy restriction during late gestation alters fetal growth and visceral organ mass: an evidence of intrauterine programming in goats.
    He ZX; Wu DQ; Sun ZH; Tan ZL; Qiao JY; Ran T; Tang SX; Zhou CS; Han XF; Wang M; Kang JH; Beauchemin KA
    Anim Reprod Sci; 2013 Mar; 137(3-4):177-82. PubMed ID: 23395360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Postnatal delayed growth impacts cognition but rescues programmed impaired pulmonary vascular development in an IUGR rat model.
    Yan L; Wang Y; Zhang Z; Xu S; Ullah R; Luo X; Xu X; Ma X; Chen Z; Zhang L; Lv Y; Du L
    Nutr Metab Cardiovasc Dis; 2019 Dec; 29(12):1418-1428. PubMed ID: 31653519
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maternal protein restriction during lactation induces early and lasting plasma metabolomic and hepatic lipidomic signatures of the offspring in a rodent programming model.
    Martin Agnoux A; El Ghaziri A; Moyon T; Pagniez A; David A; Simard G; Parnet P; Qannari EM; Darmaun D; Antignac JP; Alexandre-Gouabau MC
    J Nutr Biochem; 2018 May; 55():124-141. PubMed ID: 29413487
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fetal programming of CVD and renal disease: animal models and mechanistic considerations.
    Langley-Evans SC
    Proc Nutr Soc; 2013 Aug; 72(3):317-25. PubMed ID: 23312451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.