BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 25551295)

  • 1. Intramolecular N-glycan/polypeptide interactions observed at multiple N-glycan remodeling steps through [(13)C,(15)N]-N-acetylglucosamine labeling of immunoglobulin G1.
    Barb AW
    Biochemistry; 2015 Jan; 54(2):313-22. PubMed ID: 25551295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variations in oligosaccharide-protein interactions in immunoglobulin G determine the site-specific glycosylation profiles and modulate the dynamic motion of the Fc oligosaccharides.
    Wormald MR; Rudd PM; Harvey DJ; Chang SC; Scragg IG; Dwek RA
    Biochemistry; 1997 Feb; 36(6):1370-80. PubMed ID: 9063885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expeditious chemoenzymatic synthesis of CD52 glycopeptide antigens.
    Huang W; Zhang X; Ju T; Cummings RD; Wang LX
    Org Biomol Chem; 2010 Nov; 8(22):5224-33. PubMed ID: 20848033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intramolecular glycan-protein interactions in glycoproteins.
    Barb AW; Borgert AJ; Liu M; Barany G; Live D
    Methods Enzymol; 2010; 478():365-88. PubMed ID: 20816490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site specific conjugation of fluoroprobes to the remodeled Fc N-glycans of monoclonal antibodies using mutant glycosyltransferases: application for cell surface antigen detection.
    Boeggeman E; Ramakrishnan B; Pasek M; Manzoni M; Puri A; Loomis KH; Waybright TJ; Qasba PK
    Bioconjug Chem; 2009 Jun; 20(6):1228-36. PubMed ID: 19425533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restricted motion of the conserved immunoglobulin G1 N-glycan is essential for efficient FcγRIIIa binding.
    Subedi GP; Hanson QM; Barb AW
    Structure; 2014 Oct; 22(10):1478-88. PubMed ID: 25199692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the N-linked glycans on the 3D structure of the free alpha-subunit of human chorionic gonadotropin.
    Erbel PJ; Karimi-Nejad Y; van Kuik JA; Boelens R; Kamerling JP; Vliegenthart JF
    Biochemistry; 2000 May; 39(20):6012-21. PubMed ID: 10821673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-Glycosylation of Asparagine 130 in the Extracellular Domain of the Human Calcitonin Receptor Significantly Increases Peptide Hormone Affinity.
    Lee SM; Booe JM; Gingell JJ; Sjoelund V; Hay DL; Pioszak AA
    Biochemistry; 2017 Jul; 56(26):3380-3393. PubMed ID: 28614667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemoenzymatic Glyco-engineering of Monoclonal Antibodies.
    Giddens JP; Wang LX
    Methods Mol Biol; 2015; 1321():375-87. PubMed ID: 26082235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Evaluation of the Chemical Stability of 4 Well-Defined Immunoglobulin G1-Fc Glycoforms.
    Mozziconacci O; Okbazghi S; More AS; Volkin DB; Tolbert T; Schöneich C
    J Pharm Sci; 2016 Feb; 105(2):575-587. PubMed ID: 26869420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR characterization of immunoglobulin G Fc glycan motion on enzymatic sialylation.
    Barb AW; Meng L; Gao Z; Johnson RW; Moremen KW; Prestegard JH
    Biochemistry; 2012 Jun; 51(22):4618-26. PubMed ID: 22574931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Preparation and Solution NMR Spectroscopy of Human Glycoproteins Is Accessible and Rewarding.
    Barb AW; Falconer DJ; Subedi GP
    Methods Enzymol; 2019; 614():239-261. PubMed ID: 30611426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introducing N-glycans into natural products through a chemoenzymatic approach.
    Huang W; Ochiai H; Zhang X; Wang LX
    Carbohydr Res; 2008 Nov; 343(17):2903-13. PubMed ID: 18805520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton NMR study of triantennary complex type N-linked glycan chains: assignment of proton chemical shifts of the beta-Man residue in a basic unit of the triantennary glycan chain having a GlcNAc beta 1-->6 Man alpha 1-->6 Man beta-->sequence.
    Taguchi T; Muto Y; Kitajima K; Yokoyama S; Inoue S; Inoue Y
    Glycobiology; 1997 Feb; 7(1):31-6. PubMed ID: 9061362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential in vitro enzymatic N-glycoprotein modification reveals site-specific rates of glycoenzyme processing.
    Adams TM; Zhao P; Chapla D; Moremen KW; Wells L
    J Biol Chem; 2022 Oct; 298(10):102474. PubMed ID: 36089065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro conversion of the carbohydrate moiety of fungal glycoproteins to mammalian-type oligosaccharides--evidence for N-acetylglucosaminyltransferase-I-accepting glycans from Trichoderma reesei.
    Maras M; Saelens X; Laroy W; Piens K; Claeyssens M; Fiers W; Contreras R
    Eur J Biochem; 1997 Nov; 249(3):701-7. PubMed ID: 9395316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbohydrate synthesis and biosynthesis technologies for cracking of the glycan code: recent advances.
    Mrázek H; Weignerová L; Bojarová P; Novák P; Vaněk O; Bezouška K
    Biotechnol Adv; 2013; 31(1):17-37. PubMed ID: 22484115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins.
    Takahashi M; Kuroki Y; Ohtsubo K; Taniguchi N
    Carbohydr Res; 2009 Aug; 344(12):1387-90. PubMed ID: 19508951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended glycan diversity in a bacterial protein glycosylation system linked to allelic polymorphisms and minimal genetic alterations in a glycosyltransferase gene.
    Børud B; Anonsen JH; Viburiene R; Cohen EH; Samuelsen AB; Koomey M
    Mol Microbiol; 2014 Nov; 94(3):688-99. PubMed ID: 25213144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of N-Glycan Release from Human Immunoglobulin G (IgG) by PNGase F: All Glycans Are Not Created Equal.
    Huang Y; Orlando R
    J Biomol Tech; 2017 Dec; 28(4):150-157. PubMed ID: 29042829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.