These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
448 related articles for article (PubMed ID: 25551330)
1. Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals. Zhou S; Pi X; Ni Z; Ding Y; Jiang Y; Jin C; Delerue C; Yang D; Nozaki T ACS Nano; 2015 Jan; 9(1):378-86. PubMed ID: 25551330 [TBL] [Abstract][Full Text] [Related]
2. Tight-binding calculations of the optical response of optimally P-doped Si nanocrystals: a model for localized surface plasmon resonance. Pi X; Delerue C Phys Rev Lett; 2013 Oct; 111(17):177402. PubMed ID: 24206519 [TBL] [Abstract][Full Text] [Related]
3. Expanding the spectral tunability of plasmonic resonances in doped metal-oxide nanocrystals through cooperative cation-anion codoping. Ye X; Fei J; Diroll BT; Paik T; Murray CB J Am Chem Soc; 2014 Aug; 136(33):11680-6. PubMed ID: 25066599 [TBL] [Abstract][Full Text] [Related]
4. Competition between Depletion Effects and Coupling in the Plasmon Modulation of Doped Metal Oxide Nanocrystals. Tandon B; Agrawal A; Heo S; Milliron DJ Nano Lett; 2019 Mar; 19(3):2012-2019. PubMed ID: 30794418 [TBL] [Abstract][Full Text] [Related]
5. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Liu X; Swihart MT Chem Soc Rev; 2014 Jun; 43(11):3908-20. PubMed ID: 24566528 [TBL] [Abstract][Full Text] [Related]
7. Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals. Zandi O; Agrawal A; Shearer AB; Reimnitz LC; Dahlman CJ; Staller CM; Milliron DJ Nat Mater; 2018 Aug; 17(8):710-717. PubMed ID: 29988146 [TBL] [Abstract][Full Text] [Related]
8. Controlled doping of silicon nanocrystals investigated by solution-processed field effect transistors. Gresback R; Kramer NJ; Ding Y; Chen T; Kortshagen UR; Nozaki T ACS Nano; 2014 Jun; 8(6):5650-6. PubMed ID: 24832958 [TBL] [Abstract][Full Text] [Related]
9. Surface Depletion Layers in Plasmonic Metal Oxide Nanocrystals. Gibbs SL; Staller CM; Milliron DJ Acc Chem Res; 2019 Sep; 52(9):2516-2524. PubMed ID: 31424914 [TBL] [Abstract][Full Text] [Related]
10. All-inorganic colloidal silicon nanocrystals-surface modification by boron and phosphorus co-doping. Fujii M; Sugimoto H; Imakita K Nanotechnology; 2016 Jul; 27(26):262001. PubMed ID: 27189818 [TBL] [Abstract][Full Text] [Related]
11. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus. Kramer NJ; Schramke KS; Kortshagen UR Nano Lett; 2015 Aug; 15(8):5597-603. PubMed ID: 26214245 [TBL] [Abstract][Full Text] [Related]
12. The synthesis and structural characterization of boron-doped silicon-nanocrystals with enhanced electroconductivity. Sato K; Niino K; Fukata N; Hirakuri K; Yamauchi Y Nanotechnology; 2009 Sep; 20(36):365207. PubMed ID: 19687551 [TBL] [Abstract][Full Text] [Related]
13. Optical absorption and emission of nitrogen-doped silicon nanocrystals. Pi X; Chen X; Ma Y; Yang D Nanoscale; 2011 Nov; 3(11):4584-8. PubMed ID: 21989790 [TBL] [Abstract][Full Text] [Related]
14. Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement. Greenberg BL; Ganguly S; Held JT; Kramer NJ; Mkhoyan KA; Aydil ES; Kortshagen UR Nano Lett; 2015 Dec; 15(12):8162-9. PubMed ID: 26551232 [TBL] [Abstract][Full Text] [Related]
15. Minimum Line Width of Surface Plasmon Resonance in Doped ZnO Nanocrystals. Delerue C Nano Lett; 2017 Dec; 17(12):7599-7605. PubMed ID: 29190107 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of adjustable localized surface plasmon resonance in ZnO nanocrystals via a dual doping approach. Yibi Y; Chen J; Xue J; Song J; Zeng H Sci Bull (Beijing); 2017 May; 62(10):693-699. PubMed ID: 36659440 [TBL] [Abstract][Full Text] [Related]
17. Cu-Sb-S Ternary Semiconductor Nanoparticle Plasmonics. Liu G; Qi S; Chen J; Lou Y; Zhao Y; Burda C Nano Lett; 2021 Mar; 21(6):2610-2617. PubMed ID: 33705150 [TBL] [Abstract][Full Text] [Related]