These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 25551494)
1. Biological effectiveness of photons and electrons as a function of energy. Simon SL; Braby LA; Chang PY; Goodhead DT; Hora S; Kocher DC; Mabuchi K; Puskin JS; Richardson D; Rosenstein M; Tucker J; Vano E Health Phys; 2015 Feb; 108(2):143-4. PubMed ID: 25551494 [No Abstract] [Full Text] [Related]
2. Why it is advisable to keep wR = 1 and Q = 1 for photons and electrons. Dietze G; Alberts WG Radiat Prot Dosimetry; 2004; 109(4):297-302. PubMed ID: 15273347 [TBL] [Abstract][Full Text] [Related]
3. An empirical method for deriving RBE values associated with electrons, photons and radionuclides. Bellamy M; Puskin J; Hertel N; Eckerman K Radiat Prot Dosimetry; 2015 Dec; 167(4):664-70. PubMed ID: 25636403 [TBL] [Abstract][Full Text] [Related]
4. NCRP Report 181, Evaluation of the Relative Effectiveness of Low-energy Photons and Electrons in Inducing Cancer in Humans: A Critique and Alternative Analysis. Kocher DC; Hoffman FO Health Phys; 2019 Jun; 116(6):817-827. PubMed ID: 30889098 [TBL] [Abstract][Full Text] [Related]
6. Radiation quality of photons in small and large receptors--a microdosimetric analysis. Chen J; Roos H; Kellerer AM Radiat Prot Dosimetry; 2006; 118(3):238-42. PubMed ID: 16286503 [TBL] [Abstract][Full Text] [Related]
7. Interaction of ionizing radiation with matter. Turner JE Health Phys; 2004 Mar; 86(3):228-52. PubMed ID: 14982226 [TBL] [Abstract][Full Text] [Related]
8. BIOLOGICAL EFFECTIVENESS OF LOWER-ENERGY PHOTONS FOR CANCER RISK. Goodhead DT Radiat Prot Dosimetry; 2019 May; 183(1-2):197-202. PubMed ID: 30535278 [TBL] [Abstract][Full Text] [Related]
9. Basic criteria, epidemiology, radiobiology, and risk (program area committee 1)-session Q&A. Preston RJ; Cucinotta FA; Simon SL Health Phys; 2015 Feb; 108(2):145-8. PubMed ID: 25551495 [No Abstract] [Full Text] [Related]
10. Neutron field produced by 25 MeV deuteron on thick beryllium for radiobiological study; energy spectrum. Takada M; Mihara E; Sasaki M; Nakamura T; Honma T; Kono K; Fujitaka K Radiat Prot Dosimetry; 2004; 110(1-4):601-6. PubMed ID: 15353715 [TBL] [Abstract][Full Text] [Related]
12. Energy dependence of dose and dose-rate effectiveness factor for low-let radiations: potential importance to estimation of cancer risks and relationship to biological effectiveness. Trabalka JR; Kocher DC Health Phys; 2007 Jul; 93(1):17-27. PubMed ID: 17563489 [TBL] [Abstract][Full Text] [Related]
14. Averaged particle dose conversion coefficients in air crew dosimetry. Mares V; Roesler S; Schraube H Radiat Prot Dosimetry; 2004; 110(1-4):371-6. PubMed ID: 15353676 [TBL] [Abstract][Full Text] [Related]
15. New challenges in high-energy particle radiobiology. Durante M Br J Radiol; 2014 Mar; 87(1035):20130626. PubMed ID: 24198199 [TBL] [Abstract][Full Text] [Related]
16. Determination of absorbed dose in the vicinity of a neutron source. Schlegel DR Radiat Prot Dosimetry; 2004; 110(1-4):819-21. PubMed ID: 15353752 [TBL] [Abstract][Full Text] [Related]
17. RBE and wR values of sparsely ionising radiations. Chadwwick KH; leenhouts HP J Radiol Prot; 2007 Dec; 27(4):503-4. PubMed ID: 18273998 [No Abstract] [Full Text] [Related]
18. Power saturation of ESR signal in ammonium tartrate exposed to 60Co gamma-ray photons, electrons and protons. Marrale M; Brai M; Triolo A; Bartolotta A; D'Oca MC Radiat Res; 2006 Nov; 166(5):802-9. PubMed ID: 17067208 [TBL] [Abstract][Full Text] [Related]
19. End-to-end system test for solid-state microdosemeters. Pisacane VL; Dolecek QE; Malak H; Dicello JF Radiat Prot Dosimetry; 2010 Aug; 140(4):309-18. PubMed ID: 20430854 [TBL] [Abstract][Full Text] [Related]
20. On the parameterization of the biological effect in a mixed radiation field. Kraft G; Scholz M Adv Space Res; 1994 Oct; 14(10):997-1004. PubMed ID: 11540044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]