These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 25551516)
1. High anhydrous proton conductivity of imidazole-loaded mesoporous polyimides over a wide range from subzero to moderate temperature. Ye Y; Zhang L; Peng Q; Wang GE; Shen Y; Li Z; Wang L; Ma X; Chen QH; Zhang Z; Xiang S J Am Chem Soc; 2015 Jan; 137(2):913-8. PubMed ID: 25551516 [TBL] [Abstract][Full Text] [Related]
2. Imparting high proton conductivity to a metal-organic framework material by controlled acid impregnation. Ponomareva VG; Kovalenko KA; Chupakhin AP; Dybtsev DN; Shutova ES; Fedin VP J Am Chem Soc; 2012 Sep; 134(38):15640-3. PubMed ID: 22958118 [TBL] [Abstract][Full Text] [Related]
3. Anhydrous Proton Conduction in Crystalline Porous Materials with a Wide Working Temperature Range. Xiang F; Chen S; Zheng S; Yang Y; Huang J; Lin Q; Wang L; Xiang S; Zhang Z ACS Appl Mater Interfaces; 2021 Sep; 13(35):41363-41371. PubMed ID: 34431653 [TBL] [Abstract][Full Text] [Related]
4. Anhydrous proton-conducting membrane based on poly-2-vinylpyridinium dihydrogenphosphate for electrochemical applications. Yang B; Manohar A; Prakash GK; Chen W; Narayanan SR J Phys Chem B; 2011 Dec; 115(49):14462-8. PubMed ID: 22029863 [TBL] [Abstract][Full Text] [Related]
5. A novel proton conductor of imidazole-aluminium phosphate hybrids in the solid state. Nakayama M; Sugiura Y; Hayakawa T; Nogami M Phys Chem Chem Phys; 2011 May; 13(20):9439-44. PubMed ID: 21479326 [TBL] [Abstract][Full Text] [Related]
6. Anhydrous proton-conducting polymeric electrolytes for fuel cells. Narayanan SR; Yen SP; Liu L; Greenbaum SG J Phys Chem B; 2006 Mar; 110(9):3942-8. PubMed ID: 16509680 [TBL] [Abstract][Full Text] [Related]
7. Encapsulation of Imidazole into Ce-Modified Mesoporous KIT-6 for High Anhydrous Proton Conductivity. Tabero A; Jankowska A; Ostrowski A; Janiszewska E; Kowalska-Kuś J; Held A; Kowalak S Molecules; 2024 Jul; 29(13):. PubMed ID: 38999192 [TBL] [Abstract][Full Text] [Related]
8. Modulation of defects in metal organic gels to enhance anhydrous proton conduction from subzero to moderate temperature. Gao D; Tang J; Zhang F; Wen C; Feng L; Wan C; Qu F; Liang X J Colloid Interface Sci; 2023 Nov; 650(Pt A):19-27. PubMed ID: 37392496 [TBL] [Abstract][Full Text] [Related]
9. Anhydrous proton conducting materials based on sulfonated dimethylphenethylchlorosilane grafted mesoporous silica/ionic liquid composite. Amiinu IS; Liang X; Tu Z; Zhang H; Feng J; Wan Z; Pan M ACS Appl Mater Interfaces; 2013 Nov; 5(22):11535-43. PubMed ID: 24215166 [TBL] [Abstract][Full Text] [Related]
10. Proton conductors with wide operating temperature domains achieved by applying a dual-modification strategy to MIL-101. Zhang W; Lu Y; Zhang S; Dang T; Tian H; Zhang Z; Liu S Dalton Trans; 2021 Dec; 50(48):18053-18060. PubMed ID: 34842879 [TBL] [Abstract][Full Text] [Related]
11. Proton-conductive coordination polymer glass for solid-state anhydrous proton batteries. Ma N; Kosasang S; Yoshida A; Horike S Chem Sci; 2021 Mar; 12(16):5818-5824. PubMed ID: 34168806 [TBL] [Abstract][Full Text] [Related]
12. Anhydrous phosphoric Acid functionalized sintered mesoporous silica nanocomposite proton exchange membranes for fuel cells. Zeng J; He B; Lamb K; De Marco R; Shen PK; Jiang SP ACS Appl Mater Interfaces; 2013 Nov; 5(21):11240-8. PubMed ID: 24125494 [TBL] [Abstract][Full Text] [Related]
13. Anhydrous Superprotonic Conductivity in the Zirconium Acid Triphosphate ZrH Fop S; Vivani R; Masci S; Casciola M; Donnadio A Angew Chem Int Ed Engl; 2023 Apr; 62(18):e202218421. PubMed ID: 36856155 [TBL] [Abstract][Full Text] [Related]
14. Two-in-one: inherent anhydrous and water-assisted high proton conduction in a 3D metal-organic framework. Nagarkar SS; Unni SM; Sharma A; Kurungot S; Ghosh SK Angew Chem Int Ed Engl; 2014 Mar; 53(10):2638-42. PubMed ID: 24375824 [TBL] [Abstract][Full Text] [Related]
15. Abundant defects of zirconium-organic xerogels: High anhydrous proton conductivities over a wide temperature range and formic acid impedance sensing. Tang J; Zhang F; Liang X; Dai G; Qu F J Colloid Interface Sci; 2022 Feb; 607(Pt 1):181-191. PubMed ID: 34500417 [TBL] [Abstract][Full Text] [Related]
16. One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Bureekaew S; Horike S; Higuchi M; Mizuno M; Kawamura T; Tanaka D; Yanai N; Kitagawa S Nat Mater; 2009 Oct; 8(10):831-6. PubMed ID: 19734885 [TBL] [Abstract][Full Text] [Related]
17. Effect of Imidazole Arrangements on Proton-Conductivity in Metal-Organic Frameworks. Zhang FM; Dong LZ; Qin JS; Guan W; Liu J; Li SL; Lu M; Lan YQ; Su ZM; Zhou HC J Am Chem Soc; 2017 May; 139(17):6183-6189. PubMed ID: 28388068 [TBL] [Abstract][Full Text] [Related]
18. In Situ-Doped Superacid in the Covalent Triazine Framework Membrane for Anhydrous Proton Conduction in a Wide Temperature Range from Subzero to Elevated Temperature. Huang W; Li B; Wu Y; Zhang Y; Zhang W; Chen S; Fu Y; Yan T; Ma H ACS Appl Mater Interfaces; 2021 Mar; 13(11):13604-13612. PubMed ID: 33719388 [TBL] [Abstract][Full Text] [Related]
19. Heteropolyacid-encapsulated self-assembled materials for anhydrous proton-conducting electrolytes. Yamada M; Honma I J Phys Chem B; 2006 Oct; 110(41):20486-90. PubMed ID: 17034234 [TBL] [Abstract][Full Text] [Related]
20. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks. Horike S; Umeyama D; Kitagawa S Acc Chem Res; 2013 Nov; 46(11):2376-84. PubMed ID: 23730917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]