BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 2555155)

  • 1. Reverse gyrase binding to DNA alters the double helix structure and produces single-strand cleavage in the absence of ATP.
    Jaxel C; Nadal M; Mirambeau G; Forterre P; Takahashi M; Duguet M
    EMBO J; 1989 Oct; 8(10):3135-9. PubMed ID: 2555155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic DNA-dependent ATPase activity of reverse gyrase.
    Shibata T; Nakasu S; Yasui K; Kikuchi A
    J Biol Chem; 1987 Aug; 262(22):10419-21. PubMed ID: 3038879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase.
    Jungblut SP; Klostermeier D
    J Mol Biol; 2007 Aug; 371(1):197-209. PubMed ID: 17560602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-dependent DNA topoisomerase from the archaebacterium Sulfolobus acidocaldarius. Relaxation of supercoiled DNA at high temperature.
    Mirambeau G; Duguet M; Forterre P
    J Mol Biol; 1984 Nov; 179(3):559-63. PubMed ID: 6096554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional interaction of reverse gyrase with single-strand binding protein of the archaeon Sulfolobus.
    Napoli A; Valenti A; Salerno V; Nadal M; Garnier F; Rossi M; Ciaramella M
    Nucleic Acids Res; 2005; 33(2):564-76. PubMed ID: 15673717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reverse gyrase, the two domains intimately cooperate to promote positive supercoiling.
    Déclais AC; Marsault J; Confalonieri F; de La Tour CB; Duguet M
    J Biol Chem; 2000 Jun; 275(26):19498-504. PubMed ID: 10748189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of reverse gyrase from Sulfolobus shibatae. Its proteolytic product appears as an ATP-independent topoisomerase.
    Nadal M; Couderc E; Duguet M; Jaxel C
    J Biol Chem; 1994 Feb; 269(7):5255-63. PubMed ID: 8106509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA topoisomerase III from extremely thermophilic archaebacteria. ATP-independent type I topoisomerase from Desulfurococcus amylolyticus drives extensive unwinding of closed circular DNA at high temperature.
    Slesarev AI; Zaitzev DA; Kopylov VM; Stetter KO; Kozyavkin SA
    J Biol Chem; 1991 Jul; 266(19):12321-8. PubMed ID: 1648092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of DNA cleavage by reverse gyrase from Sulfolobus shibatae B12.
    Jaxel C; Duguet M; Nadal M
    Eur J Biochem; 1999 Feb; 260(1):103-11. PubMed ID: 10091589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse gyrase functions as a DNA renaturase: annealing of complementary single-stranded circles and positive supercoiling of a bubble substrate.
    Hsieh TS; Plank JL
    J Biol Chem; 2006 Mar; 281(9):5640-7. PubMed ID: 16407212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotide- and stoichiometry-dependent DNA supercoiling by reverse gyrase.
    Hsieh TS; Capp C
    J Biol Chem; 2005 May; 280(21):20467-75. PubMed ID: 15788400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Torsional stress in DNA limits collaboration among reverse gyrase molecules.
    Ogawa T; Sutoh K; Kikuchi A; Kinosita K
    FEBS J; 2016 Apr; 283(8):1372-84. PubMed ID: 26836040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The latch modulates nucleotide and DNA binding to the helicase-like domain of Thermotoga maritima reverse gyrase and is required for positive DNA supercoiling.
    Ganguly A; Del Toro Duany Y; Rudolph MG; Klostermeier D
    Nucleic Acids Res; 2011 Mar; 39(5):1789-800. PubMed ID: 21051354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Archaebacterial reverse gyrase cleavage-site specificity is similar to that of eubacterial DNA topoisomerases I.
    Kovalsky OI; Kozyavkin SA; Slesarev AI
    Nucleic Acids Res; 1990 May; 18(9):2801-5. PubMed ID: 2160070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A topoisomerase from Escherichia coli related to DNA gyrase.
    Brown PO; Peebles CL; Cozzarelli NR
    Proc Natl Acad Sci U S A; 1979 Dec; 76(12):6110-4. PubMed ID: 230498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reverse gyrase of Sulfolobus: purification to homogeneity and characterization.
    Nadal M; Jaxel C; Portemer C; Forterre P; Mirambeau G; Duguet M
    Biochemistry; 1988 Dec; 27(26):9102-8. PubMed ID: 2853975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the role of the latch in the positive supercoiling mechanism of reverse gyrase.
    Rodríguez AC
    Biochemistry; 2003 May; 42(20):5993-6004. PubMed ID: 12755601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The archaeal topoisomerase reverse gyrase is a helix-destabilizing protein that unwinds four-way DNA junctions.
    Valenti A; Perugino G; Varriale A; D'Auria S; Rossi M; Ciaramella M
    J Biol Chem; 2010 Nov; 285(47):36532-41. PubMed ID: 20851892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A β-hairpin is a Minimal Latch that Supports Positive Supercoiling by Reverse Gyrase.
    Collin F; Weisslocker-Schaetzel M; Klostermeier D
    J Mol Biol; 2020 Jul; 432(16):4762-4771. PubMed ID: 32592697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of DNA overwinding by reverse gyrase.
    Ogawa T; Yogo K; Furuike S; Sutoh K; Kikuchi A; Kinosita K
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7495-500. PubMed ID: 26023188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.