BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 2555155)

  • 21. Studies on DNA polymerases and topoisomerases in archaebacteria.
    Forterre P; Elie C; Sioud M; Hamal A
    Can J Microbiol; 1989 Jan; 35(1):228-33. PubMed ID: 2541877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA substrate specificity of reverse gyrase from extremely thermophilic archaebacteria.
    Slesarev AI; Kozyavkin SA
    J Biomol Struct Dyn; 1990 Feb; 7(4):935-42. PubMed ID: 2155623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential contributions of the latch in Thermotoga maritima reverse gyrase to the binding of single-stranded DNA before and after ATP hydrolysis.
    Del Toro Duany Y; Ganguly A; Klostermeier D
    Biol Chem; 2014 Jan; 395(1):83-93. PubMed ID: 23959663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binding and Hydrolysis of a Single ATP Is Sufficient for N-Gate Closure and DNA Supercoiling by Gyrase.
    Hartmann S; Gubaev A; Klostermeier D
    J Mol Biol; 2017 Nov; 429(23):3717-3729. PubMed ID: 29032205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Micrococcus luteus DNA gyrase: active components and a model for its supercoiling of DNA.
    Liu LF; Wang JC
    Proc Natl Acad Sci U S A; 1978 May; 75(5):2098-102. PubMed ID: 276855
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The reverse gyrase helicase-like domain is a nucleotide-dependent switch that is attenuated by the topoisomerase domain.
    del Toro Duany Y; Jungblut SP; Schmidt AS; Klostermeier D
    Nucleic Acids Res; 2008 Oct; 36(18):5882-95. PubMed ID: 18796525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reverse gyrase transiently unwinds double-stranded DNA in an ATP-dependent reaction.
    Ganguly A; del Toro Duany Y; Klostermeier D
    J Mol Biol; 2013 Jan; 425(1):32-40. PubMed ID: 23123378
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reverse gyrase--recent advances and current mechanistic understanding of positive DNA supercoiling.
    Lulchev P; Klostermeier D
    Nucleic Acids Res; 2014 Jul; 42(13):8200-13. PubMed ID: 25013168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of DNA topology during thermal stress in hyperthermophilic archaea: DNA topoisomerase levels, activities and induced thermotolerance during heat and cold shock in Sulfolobus.
    López-García P; Forterre P
    Mol Microbiol; 1999 Aug; 33(4):766-77. PubMed ID: 10447886
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies of a positive supercoiling machine. Nucleotide hydrolysis and a multifunctional "latch" in the mechanism of reverse gyrase.
    Rodriguez AC
    J Biol Chem; 2002 Aug; 277(33):29865-73. PubMed ID: 12048189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A reverse gyrase with an unusual structure. A type I DNA topoisomerase from the hyperthermophile Methanopyrus kandleri is a two-subunit protein.
    Kozyavkin SA; Krah R; Gellert M; Stetter KO; Lake JA; Slesarev AI
    J Biol Chem; 1994 Apr; 269(15):11081-9. PubMed ID: 8157633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The conformational flexibility of the helicase-like domain from Thermotoga maritima reverse gyrase is restricted by the topoisomerase domain.
    del Toro Duany Y; Klostermeier D; Rudolph MG
    Biochemistry; 2011 Jul; 50(26):5816-23. PubMed ID: 21627332
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Homologous pairing and topological linkage of DNA molecules by combined action of E. coli RecA protein and topoisomerase I.
    Cunningham RP; Wu AM; Shibata T; DasGupta C; Radding CM
    Cell; 1981 Apr; 24(1):213-23. PubMed ID: 6263487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A model for the mechanism of strand passage by DNA gyrase.
    Kampranis SC; Bates AD; Maxwell A
    Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8414-9. PubMed ID: 10411889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure of reverse gyrase with a minimal latch that supports ATP-dependent positive supercoiling without specific interactions with the topoisomerase domain.
    Mhaindarkar VP; Rasche R; Kümmel D; Rudolph MG; Klostermeier D
    Acta Crystallogr D Struct Biol; 2023 Jun; 79(Pt 6):498-507. PubMed ID: 37204816
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissection of reverse gyrase activities: insight into the evolution of a thermostable molecular machine.
    Valenti A; Perugino G; D'Amaro A; Cacace A; Napoli A; Rossi M; Ciaramella M
    Nucleic Acids Res; 2008 Aug; 36(14):4587-97. PubMed ID: 18614606
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reverse gyrase--a topoisomerase which introduces positive superhelical turns into DNA.
    Kikuchi A; Asai K
    Nature; 1984 Jun 21-27; 309(5970):677-81. PubMed ID: 6328327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High positive supercoiling in vitro catalyzed by an ATP and polyethylene glycol-stimulated topoisomerase from Sulfolobus acidocaldarius.
    Forterre P; Mirambeau G; Jaxel C; Nadal M; Duguet M
    EMBO J; 1985 Aug; 4(8):2123-8. PubMed ID: 14708549
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Template supercoiling during ATP-dependent DNA helix tracking: studies with simian virus 40 large tumor antigen.
    Yang L; Jessee CB; Lau K; Zhang H; Liu LF
    Proc Natl Acad Sci U S A; 1989 Aug; 86(16):6121-5. PubMed ID: 2548199
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The reverse gyrase from Pyrobaculum calidifontis, a novel extremely thermophilic DNA topoisomerase endowed with DNA unwinding and annealing activities.
    Jamroze A; Perugino G; Valenti A; Rashid N; Rossi M; Akhtar M; Ciaramella M
    J Biol Chem; 2014 Feb; 289(6):3231-43. PubMed ID: 24347172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.