These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
416 related articles for article (PubMed ID: 25551554)
1. Plant-plant-microbe mechanisms involved in soil-borne disease suppression on a maize and pepper intercropping system. Yang M; Zhang Y; Qi L; Mei X; Liao J; Ding X; Deng W; Fan L; He X; Vivanco JM; Li C; Zhu Y; Zhu S PLoS One; 2014; 9(12):e115052. PubMed ID: 25551554 [TBL] [Abstract][Full Text] [Related]
2. [Effects or maize/peanut intercropping on rhizosphere soil microbes and nutrient contents]. Zhang JE; Gao AX; Xu HQ; Luo MZ Ying Yong Sheng Tai Xue Bao; 2009 Jul; 20(7):1597-602. PubMed ID: 19899457 [TBL] [Abstract][Full Text] [Related]
3. Priming maize resistance by its neighbors: activating 1,4-benzoxazine-3-ones synthesis and defense gene expression to alleviate leaf disease. Ding X; Yang M; Huang H; Chuan Y; He X; Li C; Zhu Y; Zhu S Front Plant Sci; 2015; 6():830. PubMed ID: 26528303 [TBL] [Abstract][Full Text] [Related]
4. Belowground Interactions Impact the Soil Bacterial Community, Soil Fertility, and Crop Yield in Maize/Peanut Intercropping Systems. Li Q; Chen J; Wu L; Luo X; Li N; Arafat Y; Lin S; Lin W Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29470429 [TBL] [Abstract][Full Text] [Related]
5. Response of the arbuscular mycorrhizal fungi diversity and community in maize and soybean rhizosphere soil and roots to intercropping systems with different nitrogen application rates. Zhang R; Mu Y; Li X; Li S; Sang P; Wang X; Wu H; Xu N Sci Total Environ; 2020 Oct; 740():139810. PubMed ID: 32563865 [TBL] [Abstract][Full Text] [Related]
6. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot. Gao X; Wu M; Xu R; Wang X; Pan R; Kim HJ; Liao H PLoS One; 2014; 9(5):e95031. PubMed ID: 24810161 [TBL] [Abstract][Full Text] [Related]
7. Antimicrobial Terpenes Suppressed the Infection Process of Yang Y; Li Y; Mei X; Yang M; Huang H; Du F; Wu J; He Y; Sun J; Wang H; He X; Zhu S; Li Y; Liu Y Front Plant Sci; 2022; 13():890534. PubMed ID: 35755704 [TBL] [Abstract][Full Text] [Related]
8. Intercropping enhances maize growth and nutrient uptake by driving the link between rhizosphere metabolites and microbiomes. Jiang P; Wang Y; Zhang Y; Fei J; Rong X; Peng J; Yin L; Luo G New Phytol; 2024 Aug; 243(4):1506-1521. PubMed ID: 38874414 [TBL] [Abstract][Full Text] [Related]
9. Effects of lily/maize intercropping on rhizosphere microbial community and yield of Lilium davidii var. unicolor. Zhou L; Wang Y; Xie Z; Zhang Y; Malhi SS; Guo Z; Qiu Y; Wang L J Basic Microbiol; 2018 Oct; 58(10):892-901. PubMed ID: 30101457 [TBL] [Abstract][Full Text] [Related]
10. The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. Sang MK; Kim KD J Appl Microbiol; 2012 Aug; 113(2):383-98. PubMed ID: 22563881 [TBL] [Abstract][Full Text] [Related]
11. Phenolic Acids Released in Maize Rhizosphere During Maize-Soybean Intercropping Inhibit Zhang H; Yang Y; Mei X; Li Y; Wu J; Li Y; Wang H; Huang H; Yang M; He X; Zhu S; Liu Y Front Plant Sci; 2020; 11():886. PubMed ID: 32849668 [TBL] [Abstract][Full Text] [Related]
12. [Plant growth and Cd accumulation characteristics in different planting modes of maize and Amaranthus hypochondriacus.]. Guo N; Chi GY; Shi Y; Chen X Ying Yong Sheng Tai Xue Bao; 2019 Sep; 30(9):3164-3174. PubMed ID: 31529892 [TBL] [Abstract][Full Text] [Related]
13. Benzoxazines in the Root Exudates Responsible for Nonhost Disease Resistance of Maize to Liu H; An T; Zhao Y; Du X; Bi X; Zhang Z; Chen Y; Wen J Phytopathology; 2022 Jul; 112(7):1537-1544. PubMed ID: 35113672 [TBL] [Abstract][Full Text] [Related]
14. Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots. Inal A; Gunes A; Zhang F; Cakmak I Plant Physiol Biochem; 2007 May; 45(5):350-6. PubMed ID: 17467283 [TBL] [Abstract][Full Text] [Related]
15. [Effects of different cropping modes on crop root growth, yield, and rhizosphere soil microbes' number]. Yong TW; Yang WY; Xiang DB; Chen XR Ying Yong Sheng Tai Xue Bao; 2012 Jan; 23(1):125-32. PubMed ID: 22489489 [TBL] [Abstract][Full Text] [Related]
16. [Crop root growth and water uptake in maize/soybean strip intercropping]. Gao Y; Duan AW; Liu ZD; Wang HZ; Chen JP; Liu AN Ying Yong Sheng Tai Xue Bao; 2009 Feb; 20(2):307-13. PubMed ID: 19459368 [TBL] [Abstract][Full Text] [Related]
17. Maize edible-legumes intercropping systems for enhancing agrobiodiversity and belowground ecosystem services. Jalloh AA; Mutyambai DM; Yusuf AA; Subramanian S; Khamis F Sci Rep; 2024 Jun; 14(1):14355. PubMed ID: 38906908 [TBL] [Abstract][Full Text] [Related]
18. Biocontrol activity and induction of systemic resistance in pepper by compost water extracts against Phytophthora capsici. Sang MK; Kim JG; Kim KD Phytopathology; 2010 Aug; 100(8):774-83. PubMed ID: 20626281 [TBL] [Abstract][Full Text] [Related]
19. [Analysis of Bacterial Community Characteristics in Maize Root Zones Under Maize-soybean Compound Planting Mode]. Song Y; Zhou SH; Niu HJ; Zhang XX; Huang YL; Xing MZ; Chen XB Huan Jing Ke Xue; 2024 Aug; 45(8):4894-4903. PubMed ID: 39168705 [TBL] [Abstract][Full Text] [Related]
20. [Effects of different genotypes soybean and maize intercropping on soil phosphorus fractions and crop phosphorus uptake]. Zhu XH; Tan JL; Zhou HY; Wang TQ; Zhang BB; Lu X; Tian JH; Liang CY; Tian J Ying Yong Sheng Tai Xue Bao; 2024 Jun; 35(6):1583-1589. PubMed ID: 39235016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]