BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25551558)

  • 1. Epistasis as a determinant of the HIV-1 protease's robustness to mutation.
    Capel E; Parera M; Martinez MA
    PLoS One; 2014; 9(12):e116301. PubMed ID: 25551558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HIV-1 protease catalytic efficiency effects caused by random single amino acid substitutions.
    Parera M; Fernàndez G; Clotet B; Martínez MA
    Mol Biol Evol; 2007 Feb; 24(2):382-7. PubMed ID: 17090696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epistasis among deleterious mutations in the HIV-1 protease.
    Parera M; Perez-Alvarez N; Clotet B; Martínez MA
    J Mol Biol; 2009 Sep; 392(2):243-50. PubMed ID: 19607838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secondary mutations M36I and A71V in the human immunodeficiency virus type 1 protease can provide an advantage for the emergence of the primary mutation D30N.
    Clemente JC; Hemrajani R; Blum LE; Goodenow MM; Dunn BM
    Biochemistry; 2003 Dec; 42(51):15029-35. PubMed ID: 14690411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong Selection Significantly Increases Epistatic Interactions in the Long-Term Evolution of a Protein.
    Gupta A; Adami C
    PLoS Genet; 2016 Mar; 12(3):e1005960. PubMed ID: 27028897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong epistatic interactions within a single protein.
    Parera M; Martinez MA
    Mol Biol Evol; 2014 Jun; 31(6):1546-53. PubMed ID: 24682281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for positive epistasis in HIV-1.
    Bonhoeffer S; Chappey C; Parkin NT; Whitcomb JM; Petropoulos CJ
    Science; 2004 Nov; 306(5701):1547-50. PubMed ID: 15567861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: possible contributions to drug resistance and a potential new target site for drugs.
    Perryman AL; Lin JH; McCammon JA
    Protein Sci; 2004 Apr; 13(4):1108-23. PubMed ID: 15044738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance.
    Muzammil S; Ross P; Freire E
    Biochemistry; 2003 Jan; 42(3):631-8. PubMed ID: 12534275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution. Epistasis in RNA viruses.
    Michalakis Y; Roze D
    Science; 2004 Nov; 306(5701):1492-3. PubMed ID: 15567846
    [No Abstract]   [Full Text] [Related]  

  • 11. Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants.
    Kozísek M; Bray J; Rezácová P; Sasková K; Brynda J; Pokorná J; Mammano F; Rulísek L; Konvalinka J
    J Mol Biol; 2007 Dec; 374(4):1005-16. PubMed ID: 17977555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limits to detecting epistasis in the fitness landscape of HIV.
    Biswas A; Haldane A; Levy RM
    PLoS One; 2022; 17(1):e0262314. PubMed ID: 35041711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processivity and drug-dependence of HIV-1 protease: determinants of viral fitness in variants resistant to protease inhibitors.
    Menzo S; Monachetti A; Balotta C; Corvasce S; Rusconi S; Paolucci S; Baldanti F; Bagnarelli P; Clementi M
    AIDS; 2003 Mar; 17(5):663-71. PubMed ID: 12646788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hierarchical model of HIV-1 protease drug resistance.
    Goodsell DS
    Appl Bioinformatics; 2002; 1(1):3-12. PubMed ID: 15130852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of complexes of a peptidic inhibitor with wild-type and two mutant HIV-1 proteases.
    Hong L; Treharne A; Hartsuck JA; Foundling S; Tang J
    Biochemistry; 1996 Aug; 35(33):10627-33. PubMed ID: 8718851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistence of HIV-1 variants with multiple protease inhibitor (PI)-resistance mutations in the absence of PI therapy can be explained by compensatory fixation.
    van Maarseveen NM; Wensing AM; de Jong D; Taconis M; Borleffs JC; Boucher CA; Nijhuis M
    J Infect Dis; 2007 Feb; 195(3):399-409. PubMed ID: 17205479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease.
    Vega S; Kang LW; Velazquez-Campoy A; Kiso Y; Amzel LM; Freire E
    Proteins; 2004 May; 55(3):594-602. PubMed ID: 15103623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural variation in HIV-1 protease, Gag p7 and p6, and protease cleavage sites within gag/pol polyproteins: amino acid substitutions in the absence of protease inhibitors in mothers and children infected by human immunodeficiency virus type 1.
    Barrie KA; Perez EE; Lamers SL; Farmerie WG; Dunn BM; Sleasman JW; Goodenow MM
    Virology; 1996 May; 219(2):407-16. PubMed ID: 8638406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relation between flexibility and positively selected HIV-1 protease mutants against inhibitors.
    Braz AS; Tufanetto P; Perahia D; Scott LP
    Proteins; 2012 Dec; 80(12):2680-91. PubMed ID: 22821809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.