These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 2555164)

  • 1. MyoD expression in the forming somites is an early response to mesoderm induction in Xenopus embryos.
    Hopwood ND; Pluck A; Gurdon JB
    EMBO J; 1989 Nov; 8(11):3409-17. PubMed ID: 2555164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Xenopus MyoD gene: an unlocalised maternal mRNA predates lineage-restricted expression in the early embryo.
    Harvey RP
    Development; 1990 Apr; 108(4):669-80. PubMed ID: 2167198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MyoD protein expression in Xenopus embryos closely follows a mesoderm induction-dependent amplification of MyoD transcription and is synchronous across the future somite axis.
    Harvey RP
    Mech Dev; 1992 May; 37(3):141-9. PubMed ID: 1323321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient expression of XMyoD in non-somitic mesoderm of Xenopus gastrulae.
    Frank D; Harland RM
    Development; 1991 Dec; 113(4):1387-93. PubMed ID: 1667381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xenopus embryos contain a somite-specific, MyoD-like protein that binds to a promoter site required for muscle actin expression.
    Taylor MV; Gurdon JB; Hopwood ND; Towers N; Mohun TJ
    Genes Dev; 1991 Jul; 5(7):1149-60. PubMed ID: 1648530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Widespread expression of MyoD genes in Xenopus embryos is amplified in presumptive muscle as a delayed response to mesoderm induction.
    Harvey RP
    Proc Natl Acad Sci U S A; 1991 Oct; 88(20):9198-202. PubMed ID: 1656464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquitous MyoD transcription at the midblastula transition precedes induction-dependent MyoD expression in presumptive mesoderm of X. laevis.
    Rupp RA; Weintraub H
    Cell; 1991 Jun; 65(6):927-37. PubMed ID: 1675156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of muscle genes without myogenesis by ectopic expression of MyoD in frog embryo cells.
    Hopwood ND; Gurdon JB
    Nature; 1990 Sep; 347(6289):197-200. PubMed ID: 1697650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xenopus Myf-5 marks early muscle cells and can activate muscle genes ectopically in early embryos.
    Hopwood ND; Pluck A; Gurdon JB
    Development; 1991 Feb; 111(2):551-60. PubMed ID: 1716555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xenopus embryos regulate the nuclear localization of XMyoD.
    Rupp RA; Snider L; Weintraub H
    Genes Dev; 1994 Jun; 8(11):1311-23. PubMed ID: 7926732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuregulin induces the expression of mesodermal genes in the ectoderm of Xenopus laevis.
    Chung HG; Chung HM
    Mol Cells; 1999 Oct; 9(5):497-503. PubMed ID: 10597038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of XMyoD protein in early Xenopus laevis embryos.
    Hopwood ND; Pluck A; Gurdon JB; Dilworth SM
    Development; 1992 Jan; 114(1):31-8. PubMed ID: 1315678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The RSRF/MEF2 protein SL1 regulates cardiac muscle-specific transcription of a myosin light-chain gene in Xenopus embryos.
    Chambers AE; Logan M; Kotecha S; Towers N; Sparrow D; Mohun TJ
    Genes Dev; 1994 Jun; 8(11):1324-34. PubMed ID: 7926733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An interferon regulatory factor-related gene (xIRF-6) is expressed in the posterior mesoderm during the early development of Xenopus laevis.
    Hatada S; Kinoshita M; Takahashi S; Nishihara R; Sakumoto H; Fukui A; Noda M; Asashima M
    Gene; 1997 Dec; 203(2):183-8. PubMed ID: 9426249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene activation in the amphibian mesoderm.
    Hopwood ND; Gurdon JB
    Dev Suppl; 1991; 1():95-104. PubMed ID: 1742502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of cyclin-dependent kinase 5 and a novel regulatory subunit in regulating muscle differentiation and patterning.
    Philpott A; Porro EB; Kirschner MW; Tsai LH
    Genes Dev; 1997 Jun; 11(11):1409-21. PubMed ID: 9192869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An analysis of MyoD-dependent transcription using CRISPR/Cas9 gene targeting in Xenopus tropicalis embryos.
    McQueen C; Pownall ME
    Mech Dev; 2017 Aug; 146():1-9. PubMed ID: 28536000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5.
    Tajbakhsh S; Borello U; Vivarelli E; Kelly R; Papkoff J; Duprez D; Buckingham M; Cossu G
    Development; 1998 Nov; 125(21):4155-62. PubMed ID: 9753670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signals that instruct somite and myotome formation persist in Xenopus laevis early tailbud stage embryos.
    Dali L; Gustin J; Perry K; Domingo CR
    Cells Tissues Organs; 2002; 172(1):1-12. PubMed ID: 12364823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of the cardiac actin gene in axolotl embryos.
    Masi T; Drum M; Hall L; Dahnarajan R; Johnson AD
    Int J Dev Biol; 2000 Aug; 44(5):479-84. PubMed ID: 11032182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.