These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 25551659)

  • 1. eCounterscreening: using QSAR predictions to prioritize testing for off-target activities and setting the balance between benefit and risk.
    Sheridan RP; McMasters DR; Voigt JH; Wildey MJ
    J Chem Inf Model; 2015 Feb; 55(2):231-8. PubMed ID: 25551659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.
    Martin E; Mukherjee P; Sullivan D; Jansen J
    J Chem Inf Model; 2011 Aug; 51(8):1942-56. PubMed ID: 21667971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knowledge-Based Approaches to Off-Target Screening.
    McMasters DR
    Methods Enzymol; 2018; 610():311-323. PubMed ID: 30390804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of predictive QSAR models to database mining: identification and experimental validation of novel anticonvulsant compounds.
    Shen M; Béguin C; Golbraikh A; Stables JP; Kohn H; Tropsha A
    J Med Chem; 2004 Apr; 47(9):2356-64. PubMed ID: 15084134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting potent compounds via model-based global optimization.
    Ahmadi M; Vogt M; Iyer P; Bajorath J; Fröhlich H
    J Chem Inf Model; 2013 Mar; 53(3):553-9. PubMed ID: 23363236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds.
    Prado-Prado FJ; González-Díaz H; de la Vega OM; Ubeira FM; Chou KC
    Bioorg Med Chem; 2008 Jun; 16(11):5871-80. PubMed ID: 18485714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does rational selection of training and test sets improve the outcome of QSAR modeling?
    Martin TM; Harten P; Young DM; Muratov EN; Golbraikh A; Zhu H; Tropsha A
    J Chem Inf Model; 2012 Oct; 52(10):2570-8. PubMed ID: 23030316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intelligently Applying Artificial Intelligence in Chemoinformatics.
    Sharma S; Sharma D
    Curr Top Med Chem; 2018; 18(20):1804-1826. PubMed ID: 30465503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated decision support for assessing chemical liabilities.
    Spjuth O; Eklund M; Ahlberg Helgee E; Boyer S; Carlsson L
    J Chem Inf Model; 2011 Aug; 51(8):1840-7. PubMed ID: 21774475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods.
    Zang Q; Rotroff DM; Judson RS
    J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global quantitative structure-activity relationship models vs selected local models as predictors of off-target activities for project compounds.
    Sheridan RP
    J Chem Inf Model; 2014 Apr; 54(4):1083-92. PubMed ID: 24628044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collection and preparation of molecular databases for virtual screening.
    Saxena AK; Prathipati P
    SAR QSAR Environ Res; 2006 Aug; 17(4):371-92. PubMed ID: 16920660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of MC4PC and MDL-QSAR rodent carcinogenicity predictions and the enhancement of predictive performance by combining QSAR models.
    Contrera JF; Kruhlak NL; Matthews EJ; Benz RD
    Regul Toxicol Pharmacol; 2007 Dec; 49(3):172-82. PubMed ID: 17703860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network and pathway analysis of compound-protein interactions.
    Brennan RJ; Nikolskya T; Bureeva S
    Methods Mol Biol; 2009; 575():225-47. PubMed ID: 19727618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic Quantitative Structure-Activity Relationship Modeling to Fill Data Gaps in High-Throughput Screening.
    Ciallella HL; Chung E; Russo DP; Zhu H
    Methods Mol Biol; 2022; 2474():169-187. PubMed ID: 35294765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of validated QSAR models of D1 dopaminergic antagonists for database mining.
    Oloff S; Mailman RB; Tropsha A
    J Med Chem; 2005 Nov; 48(23):7322-32. PubMed ID: 16279792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rethinking molecular similarity: comparing compounds on the basis of biological activity.
    Petrone PM; Simms B; Nigsch F; Lounkine E; Kutchukian P; Cornett A; Deng Z; Davies JW; Jenkins JL; Glick M
    ACS Chem Biol; 2012 Aug; 7(8):1399-409. PubMed ID: 22594495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling robust QSAR.
    Polanski J; Bak A; Gieleciak R; Magdziarz T
    J Chem Inf Model; 2006; 46(6):2310-8. PubMed ID: 17125174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rule-based classification models of molecular autofluorescence.
    Su BH; Tu YS; Lin OA; Harn YC; Shen MY; Tseng YJ
    J Chem Inf Model; 2015 Feb; 55(2):434-45. PubMed ID: 25625768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.