These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 25551715)

  • 21. Catalytic oxidation of cyanides in an aqueous phase over individual and manganese-modified cobalt oxide systems.
    Christoskova S; Stoyanova M
    J Hazard Mater; 2009 Jun; 165(1-3):690-5. PubMed ID: 19038496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of acidic sites and the catalytic reaction pathways on the Rh/ZrO2 catalysts for ethanol steam reforming.
    Zhong Z; Ang H; Choong C; Chen L; Huang L; Lin J
    Phys Chem Chem Phys; 2009 Feb; 11(5):872-80. PubMed ID: 19290335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation.
    Li W; Huang H; Li H; Zhang W; Liu H
    Langmuir; 2008 Aug; 24(15):8358-66. PubMed ID: 18582130
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High efficiency degradation of 4-nitrophenol by microwave-enhanced catalytic method.
    Lai TL; Yong KF; Yu JW; Chen JH; Shu YY; Wang CB
    J Hazard Mater; 2011 Jan; 185(1):366-72. PubMed ID: 20940080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of the catalytic wet peroxide oxidation of phenol over different types of Cu/ZSM-5 catalyst.
    Valkaj KM; Katovic A; Zrncević S
    J Hazard Mater; 2007 Jun; 144(3):663-7. PubMed ID: 17416460
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique.
    Zhu H; Liang C; Yan W; Overbury SH; Dai S
    J Phys Chem B; 2006 Jun; 110(22):10842-8. PubMed ID: 16771335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heterogeneous activation of peroxymonosulphate by supported ruthenium catalysts for phenol degradation in water.
    Muhammad S; Shukla PR; Tadé MO; Wang S
    J Hazard Mater; 2012 May; 215-216():183-90. PubMed ID: 22417400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of ZrO2 properties on catalytic hydrodechlorination of chlorobenzene over Pd/ZrO2 catalysts.
    Shao Y; Xu Z; Wan H; Chen H; Liu F; Li L; Zheng S
    J Hazard Mater; 2010 Jul; 179(1-3):135-40. PubMed ID: 20303664
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of the preparation procedure on the catalytic activity of gold supported on diamond nanoparticles for phenol peroxidation.
    Martin R; Navalon S; Delgado JJ; Calvino JJ; Alvaro M; Garcia H
    Chemistry; 2011 Aug; 17(34):9494-502. PubMed ID: 21766362
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalytic role of Cu sites of Cu/MCM-41 in phenol hydroxylation.
    Zhang G; Long J; Wang X; Zhang Z; Dai W; Liu P; Li Z; Wu L; Fu X
    Langmuir; 2010 Jan; 26(2):1362-71. PubMed ID: 19938803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of gold addition by the recharge method on silver supported catalysts in the catalytic wet air oxidation (CWAO) of phenol.
    Silahua-Pavón AA; Torres-Torres G; Arévalo-Pérez JC; Cervantes-Uribe A; Guerra-Que Z; Cordero-García A; Espinosa de Los Monteros A; Beltramini JN
    RSC Adv; 2019 Apr; 9(20):11123-11134. PubMed ID: 35520247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural characterization of CeO(2)-ZrO(2)/TiO(2) and V(2)O(5)/CeO(2)-ZrO(2)/TiO(2) mixed oxide catalysts by XRD, Raman spectroscopy, HREM, and other techniques.
    Reddy BM; Lakshmanan P; Khan A; López-Cartes C; Rojas TC; Fernandez A
    J Phys Chem B; 2005 Feb; 109(5):1781-7. PubMed ID: 16851158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Supported cobalt catalysts by one-pot aqueous combustion synthesis for catalytic phenol degradation.
    Sun H; Liang H; Zhou G; Wang S
    J Colloid Interface Sci; 2013 Mar; 394():394-400. PubMed ID: 23261351
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalytic wet peroxide oxidation of phenol solutions over CuO/CeO2 systems.
    Massa P; Ivorra F; Haure P; Fenoglio R
    J Hazard Mater; 2011 Jun; 190(1-3):1068-73. PubMed ID: 21489687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nickel-based thin film on multiwalled carbon nanotubes as an efficient bifunctional electrocatalyst for water splitting.
    Yu X; Hua T; Liu X; Yan Z; Xu P; Du P
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15395-402. PubMed ID: 25136924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of ZrO
    Khataee A; Gholami P; Kayan B; Kalderis D; Dinpazhoh L; Akay S
    Ultrason Sonochem; 2018 Nov; 48():349-361. PubMed ID: 30080560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization and catalytic functionalities of copper oxide catalysts supported on zirconia.
    Chary KV; Sagar GV; Srikanth CS; Rao VV
    J Phys Chem B; 2007 Jan; 111(3):543-50. PubMed ID: 17228912
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidative dehydrogenation of n-butane over magnesium vanadate nano-catalysts supported on magnesia-zirconia: effect of vanadium content.
    Lee JK; Hong UG; Yoo Y; Cho YJ; Lee J; Chang H; Song IK
    J Nanosci Nanotechnol; 2013 Dec; 13(12):8110-5. PubMed ID: 24266201
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel ultrasonic-modified MnOx/TiO2 for low-temperature selective catalytic reduction (SCR) of NO with ammonia.
    Zhang Y; Zhao X; Xu H; Shen K; Zhou C; Jin B; Sun K
    J Colloid Interface Sci; 2011 Sep; 361(1):212-8. PubMed ID: 21641608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.