These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2555219)

  • 1. GPC phosphodiesterase and phosphomonoesterase activities of renal cortex and medulla of control, antidiuresis and diuresis rats.
    Kanfer JN; McCartney DG
    FEBS Lett; 1989 Nov; 257(2):348-50. PubMed ID: 2555219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of major organic osmolytes in rabbit kidneys in diuresis and antidiuresis.
    Yancey PH; Burg MB
    Am J Physiol; 1989 Oct; 257(4 Pt 2):F602-7. PubMed ID: 2801962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [THE CONTENT OF GLYCERYLPHOSPHORYLCHOLINE AND GLYCERYLPHOSPHORYLETHANOLAMINE IN THE RENAL MEDULLA AND RENAL CORTEX OF HIGHLY PURE WISTAR RATS DURING FORCED WATER DIURESIS AND EXTREMELY LONG THIRST ANTIDIURESIS].
    PHILIPPSON C
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1964 Jun; 280():30-7. PubMed ID: 14251602
    [No Abstract]   [Full Text] [Related]  

  • 4. Glycerophosphorylcholine phosphocholine phosphodiesterase activity of rat brain myelin.
    Kanfer JN; McCartney DG
    J Neurosci Res; 1989 Oct; 24(2):231-40. PubMed ID: 2555532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role and regulation of glycerophosphorylcholine in rat renal papilla.
    Wirthensohn G; Beck FX; Guder WG
    Pflugers Arch; 1987 Aug; 409(4-5):411-5. PubMed ID: 3627958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of the 'organic osmolyte' glycerophosphorylcholine in isolated rat inner medullary collecting duct cells. II. Regulation by extracellular osmolality.
    Bauernschmitt HG; Kinne RK
    Biochim Biophys Acta; 1993 Jul; 1150(1):25-34. PubMed ID: 8392869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of D-inositol 1:2-cyclic phosphate 2-phosphohydrolase with other phosphodiesterases of kidney.
    Dawson RM; Clarke NG
    Biochem J; 1973 May; 134(1):59-67. PubMed ID: 4353088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties and subcellular distribution of guanylate cyclase activity in rat renal medulla: correlation with tissue content of guanosine 3',5'-monophosphate.
    Craven PA; DeRubertis FR
    Biochemistry; 1976 Nov; 15(23):5131-7. PubMed ID: 10967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioactivation of bis[p-nitrophenyl]phosphate by phosphoesterases of the earthworm, Lumbricus terrestris.
    Park SC; Smith TJ; Bisesi MS
    Drug Chem Toxicol; 1993; 16(1):111-6. PubMed ID: 8382150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The glycerylphosphorylcholine and glycerylphosphorylethanolamine content of the renal cortex and medulla in Masugi nephritis-nephrosis in infected rats during forced diuresis and thirst antidiuresis].
    Philippson C
    Z Gesamte Exp Med Einschl Exp Chir; 1965; 139(4):315-29. PubMed ID: 5827757
    [No Abstract]   [Full Text] [Related]  

  • 11. Lysosomal glycerophosphocholine phosphodiesterase in Tetrahymena.
    Florin-Christensen J; Florin-Christensen M
    Biochem Mol Biol Int; 1999 Feb; 47(2):283-92. PubMed ID: 10205674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of glycerophosphocholine (GPC) by renal cells: osmotic regulation of GPC:choline phosphodiesterase.
    Zablocki K; Miller SP; Garcia-Perez A; Burg MB
    Proc Natl Acad Sci U S A; 1991 Sep; 88(17):7820-4. PubMed ID: 1652765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of lithium with vasopressin-sensitive cyclic AMP system of human renal medulla.
    Dousa TP
    Endocrinology; 1974 Nov; 95(5):1359-66. PubMed ID: 4372038
    [No Abstract]   [Full Text] [Related]  

  • 14. Cortical and medullary betaine-GPC modulated by osmolality independently of oxygen in the intact kidney.
    Cowin GJ; Crozier S; Endre ZH; Leditschke IA; Brereton IM
    Am J Physiol; 1999 Sep; 277(3):F338-46. PubMed ID: 10484516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High NaCl- and urea-induced posttranslational modifications that increase glycerophosphocholine by inhibiting GDPD5 phosphodiesterase.
    Topanurak S; Ferraris JD; Li J; Izumi Y; Williams CK; Gucek M; Wang G; Zhou X; Burg MB
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7482-7. PubMed ID: 23589856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay of choline metabolites and genes in patient-derived breast cancer xenografts.
    Grinde MT; Skrbo N; Moestue SA; Rødland EA; Borgan E; Kristian A; Sitter B; Bathen TF; Børresen-Dale AL; Mælandsmo GM; Engebraaten O; Sørlie T; Marangoni E; Gribbestad IS
    Breast Cancer Res; 2014 Jan; 16(1):R5. PubMed ID: 24447408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic hydrolysis of bis-(4-nitrophenyl)phosphate and bis-(4-cyanophenyl)phosphate by rat tissues.
    Brandt E; Heymann E
    Biochem Pharmacol; 1978 Mar; 27(5):773-7. PubMed ID: 26349
    [No Abstract]   [Full Text] [Related]  

  • 18. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.
    O'Brien PJ; Herschlag D
    Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The hydrolysis of glycerophosphocholine by rat brain microsomes: activation and inhibition.
    Spanner S; Ansell GB
    Neurochem Res; 1987 Feb; 12(2):203-6. PubMed ID: 3033533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of major organic osmolytes in rat renal inner medulla in dehydration.
    Gullans SR; Blumenfeld JD; Balschi JA; Kaleta M; Brenner RM; Heilig CW; Hebert SC
    Am J Physiol; 1988 Oct; 255(4 Pt 2):F626-34. PubMed ID: 3177652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.