BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25552316)

  • 1. Genoarchitecture of the rostral hindbrain of a shark: basis for understanding the emergence of the cerebellum at the agnathan-gnathostome transition.
    Pose-Méndez S; Candal E; Mazan S; Rodríguez-Moldes I
    Brain Struct Funct; 2016 Apr; 221(3):1321-35. PubMed ID: 25552316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphogenesis of the cerebellum and cerebellum-related structures in the shark Scyliorhinus canicula: insights on the ground pattern of the cerebellar ontogeny.
    Pose-Méndez S; Candal E; Mazan S; Rodríguez-Moldes I
    Brain Struct Funct; 2016 Apr; 221(3):1691-717. PubMed ID: 25662898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Developmental Study of the Cerebellar Nucleus in the Catshark, a Basal Gnathostome.
    Pose-Méndez S; Rodríguez-Moldes I; Candal E; Mazan S; Anadón R
    Brain Behav Evol; 2017; 89(1):1-14. PubMed ID: 28214875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Shark Alar Hypothalamus: Molecular Characterization of Prosomeric Subdivisions and Evolutionary Trends.
    Santos-Durán GN; Ferreiro-Galve S; Menuet A; Quintana-Urzainqui I; Mazan S; Rodríguez-Moldes I; Candal E
    Front Neuroanat; 2016; 10():113. PubMed ID: 27932958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ancient mechanism of hindbrain patterning has been conserved in vertebrate evolution.
    Jimenez-Guri E; Pujades C
    Evol Dev; 2011; 13(1):38-46. PubMed ID: 21210941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regionalization of the shark hindbrain: a survey of an ancestral organization.
    Rodríguez-Moldes I; Carrera I; Pose-Méndez S; Quintana-Urzainqui I; Candal E; Anadón R; Mazan S; Ferreiro-Galve S
    Front Neuroanat; 2011; 5():16. PubMed ID: 21519383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmental development of reticulospinal and branchiomotor neurons in lamprey: insights into the evolution of the vertebrate hindbrain.
    Murakami Y; Pasqualetti M; Takio Y; Hirano S; Rijli FM; Kuratani S
    Development; 2004 Mar; 131(5):983-95. PubMed ID: 14973269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmental identity and cerebellar granule cell induction in rhombomere 1.
    Eddison M; Toole L; Bell E; Wingate RJ
    BMC Biol; 2004 Jun; 2():14. PubMed ID: 15198802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An atlas of anterior hox gene expression in the embryonic sea lamprey head: Hox-code evolution in vertebrates.
    Parker HJ; Bronner ME; Krumlauf R
    Dev Biol; 2019 Sep; 453(1):19-33. PubMed ID: 31071313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of repeated structures along the body axis of jawed vertebrates, insights from the Scyliorhinus canicula Hox code.
    Oulion S; Borday-Birraux V; Debiais-Thibaud M; Mazan S; Laurenti P; Casane D
    Evol Dev; 2011; 13(3):247-59. PubMed ID: 21535463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern and polarity in the development and evolution of the gnathostome jaw: both conservation and heterotopy in the branchial arches of the shark, Scyliorhinus canicula.
    Compagnucci C; Debiais-Thibaud M; Coolen M; Fish J; Griffin JN; Bertocchini F; Minoux M; Rijli FM; Borday-Birraux V; Casane D; Mazan S; Depew MJ
    Dev Biol; 2013 May; 377(2):428-48. PubMed ID: 23473983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of the serotoninergic system in the central nervous system of a shark, the lesser spotted dogfish Scyliorhinus canicula.
    Carrera I; Molist P; Anadón R; Rodríguez-Moldes I
    J Comp Neurol; 2008 Dec; 511(6):804-31. PubMed ID: 18925650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of axis specification mechanisms in jawed vertebrates: insights from a chondrichthyan.
    Coolen M; Sauka-Spengler T; Nicolle D; Le-Mentec C; Lallemand Y; Da Silva C; Plouhinec JL; Robert B; Wincker P; Shi DL; Mazan S
    PLoS One; 2007 Apr; 2(4):e374. PubMed ID: 17440610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of the cerebellar afferent system in the shark Scyliorhinus canicula: insights into the basal organization of precerebellar nuclei in gnathostomes.
    Pose-Méndez S; Candal E; Adrio F; Rodríguez-Moldes I
    J Comp Neurol; 2014 Jan; 522(1):131-68. PubMed ID: 23818330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specification of the meso-isthmo-cerebellar region: the Otx2/Gbx2 boundary.
    Hidalgo-Sánchez M; Millet S; Bloch-Gallego E; Alvarado-Mallart RM
    Brain Res Brain Res Rev; 2005 Sep; 49(2):134-49. PubMed ID: 16111544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhombomere development in a reptilian embryo.
    Pritz MB
    J Comp Neurol; 1999 Aug; 411(2):317-26. PubMed ID: 10404256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early development of the cerebellum in teleost fishes: a study based on gene expression patterns and histology in the medaka embryo.
    Ishikawa Y; Yasuda T; Kage T; Takashima S; Yoshimoto M; Yamamoto N; Maruyama K; Takeda H; Ito H
    Zoolog Sci; 2008 Apr; 25(4):407-18. PubMed ID: 18459823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isthmus-to-midbrain transformation in the absence of midbrain-hindbrain organizer activity.
    Jászai J; Reifers F; Picker A; Langenberg T; Brand M
    Development; 2003 Dec; 130(26):6611-23. PubMed ID: 14660549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mouse Fgf8-Cre-LacZ lineage analysis defines the territory of the postnatal mammalian isthmus.
    Watson C; Shimogori T; Puelles L
    J Comp Neurol; 2017 Aug; 525(12):2782-2799. PubMed ID: 28510270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A threshold requirement for Gbx2 levels in hindbrain development.
    Waters ST; Lewandoski M
    Development; 2006 May; 133(10):1991-2000. PubMed ID: 16651541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.