These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25552487)

  • 21. Localized gastric distension disrupts slow-wave entrainment leading to temporary ectopic propagation: a high-resolution electrical mapping study.
    Chan CA; Aghababaie Z; Paskaranandavadivel N; Avci R; Cheng LK; Angeli-Gordon TR
    Am J Physiol Gastrointest Liver Physiol; 2021 Dec; 321(6):G656-G667. PubMed ID: 34612062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhomogeneities in the propagation of the slow wave in the stomach.
    Lammers WJ
    Neurogastroenterol Motil; 2015 Oct; 27(10):1349-53. PubMed ID: 26407766
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping.
    O'Grady G; Du P; Cheng LK; Egbuji JU; Lammers WJ; Windsor JA; Pullan AJ
    Am J Physiol Gastrointest Liver Physiol; 2010 Sep; 299(3):G585-92. PubMed ID: 20595620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of chronic nausea on gastric slow wave spatiotemporal dynamics in children.
    Somarajan S; Muszynski ND; Olson JD; Comstock A; Russell AC; Walker LS; Acra SA; Bradshaw LA
    Neurogastroenterol Motil; 2021 May; 33(5):e14035. PubMed ID: 33217123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of Electrophysiological Propagation by Multichannel Sensors.
    Bradshaw LA; Kim JH; Somarajan S; Richards WO; Cheng LK
    IEEE Trans Biomed Eng; 2016 Aug; 63(8):1751-9. PubMed ID: 26595907
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Multiscale Tridomain Model for Simulating Bioelectric Gastric Pacing.
    Sathar S; Trew ML; OGrady G; Cheng LK
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2685-92. PubMed ID: 26080372
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Feasibility of High-Resolution Electrical Mapping for Characterizing Conduction Blocks Created by Gastric Ablation.
    Aghababaie Z; Chan CA; Paskaranandavadivel N; Beyder A; Farrugia G; Asirvatham S; O'Grady G; Cheng LK; Angeli TR
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():170-173. PubMed ID: 31945871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave.
    Bradshaw LA; Irimia A; Sims JA; Gallucci MR; Palmer RL; Richards WO
    Neurogastroenterol Motil; 2006 Aug; 18(8):619-31. PubMed ID: 16918726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface current density mapping for identification of gastric slow wave propagation.
    Bradshaw LA; Cheng LK; Richards WO; Pullan AJ
    IEEE Trans Biomed Eng; 2009 Aug; 56(8):2131-9. PubMed ID: 19403355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bradycardic onset of spiral wave re-entry: structural substrates.
    Zemlin CW; Pertsov AM
    Europace; 2007 Nov; 9 Suppl 6():vi59-63. PubMed ID: 17959694
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupling and propagation of normal and dysrhythmic gastric slow waves during acute hyperglycaemia in healthy humans.
    Coleski R; Hasler WL
    Neurogastroenterol Motil; 2009 May; 21(5):492-9, e1-2. PubMed ID: 19309443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The gastrointestinal electrical mapping suite (GEMS): software for analyzing and visualizing high-resolution (multi-electrode) recordings in spatiotemporal detail.
    Yassi R; O'Grady G; Paskaranandavadivel N; Du P; Angeli TR; Pullan AJ; Cheng LK; Erickson JC
    BMC Gastroenterol; 2012 Jun; 12():60. PubMed ID: 22672254
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-resolution Mapping of Hyperglycemia-induced Gastric Slow Wave Dysrhythmias.
    Du P; Grady GO; Paskaranandavadivel N; Tang SJ; Abell T; Cheng LK
    J Neurogastroenterol Motil; 2019 Apr; 25(2):276-285. PubMed ID: 30870879
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-resolution optical mapping of gastric slow wave propagation.
    Zhang H; Yu H; Walcott GP; Paskaranandavadivel N; Cheng LK; O'Grady G; Rogers JM
    Neurogastroenterol Motil; 2019 Jan; 31(1):e13449. PubMed ID: 30129082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterisation of re-entrant circuit (or rotational activity) in vitro using the HL1-6 myocyte cell line.
    Houston C; Tzortzis KN; Roney C; Saglietto A; Pitcher DS; Cantwell CD; Chowdhury RA; Ng FS; Peters NS; Dupont E
    J Mol Cell Cardiol; 2018 Jun; 119():155-164. PubMed ID: 29746849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Progress in Mathematical Modeling of Gastrointestinal Slow Wave Abnormalities.
    Du P; Calder S; Angeli TR; Sathar S; Paskaranandavadivel N; O'Grady G; Cheng LK
    Front Physiol; 2017; 8():1136. PubMed ID: 29379448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated classification of spatiotemporal characteristics of gastric slow wave propagation.
    Paskaranandavadivel N; Gao J; Du P; O'Grady G; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7342-5. PubMed ID: 24111441
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-resolution in vivo monophasic gastric slow waves to quantify activation and recovery profiles.
    Han H; Cheng LK; Paskaranandavadivel N
    Neurogastroenterol Motil; 2022 Dec; 34(12):e14422. PubMed ID: 35726361
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-day, multi-sensor ambulatory monitoring of gastric electrical activity.
    Paskaranandavadivel N; Angeli TR; Manson T; Stocker A; McElmurray L; O'Grady G; Abell T; Cheng LK
    Physiol Meas; 2019 Mar; 40(2):025011. PubMed ID: 30754026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated classification and identification of slow wave propagation patterns in gastric dysrhythmia.
    Paskaranandavadivel N; Gao J; Du P; O'Grady G; Cheng LK
    Ann Biomed Eng; 2014 Jan; 42(1):177-92. PubMed ID: 24048711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.