These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 25552531)

  • 21. Minimally destructive sampling of type specimens of Pyropia (Bangiales, Rhodophyta) recovers complete plastid and mitochondrial genomes.
    Hughey JR; Gabrielson PW; Rohmer L; Tortolani J; Silva M; Miller KA; Young JD; Martell C; Ruediger E
    Sci Rep; 2014 Jun; 4():5113. PubMed ID: 24894641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential causes and consequences of rapid mitochondrial genome evolution in thermoacidophilic Galdieria (Rhodophyta).
    Cho CH; Park SI; Ciniglia C; Yang EC; Graf L; Bhattacharya D; Yoon HS
    BMC Evol Biol; 2020 Sep; 20(1):112. PubMed ID: 32892741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Horizontally-acquired genetic elements in the mitochondrial genome of a centrohelid Marophrys sp. SRT127.
    Nishimura Y; Shiratori T; Ishida KI; Hashimoto T; Ohkuma M; Inagaki Y
    Sci Rep; 2019 Mar; 9(1):4850. PubMed ID: 30890720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae.
    Schön ME; Zlatogursky VV; Singh RP; Poirier C; Wilken S; Mathur V; Strassert JFH; Pinhassi J; Worden AZ; Keeling PJ; Ettema TJG; Wideman JG; Burki F
    Nat Commun; 2021 Nov; 12(1):6651. PubMed ID: 34789758
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinctive evolutionary pattern of organelle genomes linked to the nuclear genome in Selaginellaceae.
    Kang JS; Zhang HR; Wang YR; Liang SQ; Mao ZY; Zhang XC; Xiang QP
    Plant J; 2020 Dec; 104(6):1657-1672. PubMed ID: 33073395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative genomic analyses of transport proteins encoded within the red algae Chondrus crispus, Galdieria sulphuraria, and Cyanidioschyzon merolae
    Lee J; Ghosh S; Saier MH
    J Phycol; 2017 Jun; 53(3):503-521. PubMed ID: 28328149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extremophilic red algae as models for understanding adaptation to hostile environments and the evolution of eukaryotic life on the early earth.
    Van Etten J; Cho CH; Yoon HS; Bhattacharya D
    Semin Cell Dev Biol; 2023 Jan; 134():4-13. PubMed ID: 35339358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial and Plastid Genomes from Coralline Red Algae Provide Insights into the Incongruent Evolutionary Histories of Organelles.
    Lee JM; Song HJ; Park SI; Lee YM; Jeong SY; Cho TO; Kim JH; Choi HG; Choi CG; Nelson WA; Fredericq S; Bhattacharya D; Yoon HS
    Genome Biol Evol; 2018 Nov; 10(11):2961-2972. PubMed ID: 30364957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Localization and phylogenetic analysis of enzymes related to organellar genome replication in the unicellular rhodophyte Cyanidioschyzon merolae.
    Moriyama T; Tajima N; Sekine K; Sato N
    Genome Biol Evol; 2014 Jan; 6(1):228-37. PubMed ID: 24407855
    [TBL] [Abstract][Full Text] [Related]  

  • 30. OGDA: a comprehensive organelle genome database for algae.
    Liu T; Cui Y; Jia X; Zhang J; Li R; Yu Y; Jia S; Qu J; Wang X
    Database (Oxford); 2020 Nov; 2020():. PubMed ID: 33247934
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative Genome Analysis Reveals Cyanidiococcus gen. nov., A New Extremophilic Red Algal Genus Sister to Cyanidioschyzon (Cyanidioschyzonaceae, Rhodophyta).
    Liu SL; Chiang YR; Yoon HS; Fu HY
    J Phycol; 2020 Dec; 56(6):1428-1442. PubMed ID: 33460076
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mitochondrial genome of Grateloupia taiwanensis (Halymeniaceae, Rhodophyta) and comparative mitochondrial genomics of red algae.
    DePriest MS; Bhattacharya D; López-Bautista JM
    Biol Bull; 2014 Oct; 227(2):191-200. PubMed ID: 25411376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae.
    Douglas SE; Penny SL
    J Mol Evol; 1999 Feb; 48(2):236-44. PubMed ID: 9929392
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The genome of the thermoacidophilic red microalga Galdieria sulphuraria encodes a small family of secreted class III peroxidases that might be involved in cell wall modification.
    Oesterhelt C; Vogelbein S; Shrestha RP; Stanke M; Weber AP
    Planta; 2008 Jan; 227(2):353-62. PubMed ID: 17899175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The GC-rich mitochondrial and plastid genomes of the green alga Coccomyxa give insight into the evolution of organelle DNA nucleotide landscape.
    Smith DR; Burki F; Yamada T; Grimwood J; Grigoriev IV; Van Etten JL; Keeling PJ
    PLoS One; 2011; 6(8):e23624. PubMed ID: 21887287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cold Acclimation of the Thermoacidophilic Red Alga Galdieria sulphuraria: Changes in Gene Expression and Involvement of Horizontally Acquired Genes.
    Rossoni AW; Schï Nknecht G; Lee HJ; Rupp RL; Flachbart S; Mettler-Altmann T; Weber APM; Eisenhut M
    Plant Cell Physiol; 2019 Mar; 60(3):702-712. PubMed ID: 30590832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Floridoside and isofloridoside are synthesized by trehalose 6-phosphate synthase-like enzymes in the red alga Galdieria sulphuraria.
    Pade N; Linka N; Ruth W; Weber APM; Hagemann M
    New Phytol; 2015 Feb; 205(3):1227-1238. PubMed ID: 25323590
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mixotrophic growth of the extremophile Galdieria sulphuraria reveals the flexibility of its carbon assimilation metabolism.
    Curien G; Lyska D; Guglielmino E; Westhoff P; Janetzko J; Tardif M; Hallopeau C; Brugière S; Dal Bo D; Decelle J; Gallet B; Falconet D; Carone M; Remacle C; Ferro M; Weber APM; Finazzi G
    New Phytol; 2021 Jul; 231(1):326-338. PubMed ID: 33764540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Actin gene family dynamics in cryptomonads and red algae.
    Tanifuji G; Archibald JM
    J Mol Evol; 2010 Sep; 71(3):169-79. PubMed ID: 20700735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Disentangling Complex Inheritance Patterns of Plant Organellar Genomes: An Example From Carrot.
    Mandel JR; Ramsey AJ; Holley JM; Scott VA; Mody D; Abbot P
    J Hered; 2020 Dec; 111(6):531-538. PubMed ID: 32886780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.