BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 25552604)

  • 21. Condensin-Dependent Chromatin Compaction Represses Transcription Globally during Quiescence.
    Swygert SG; Kim S; Wu X; Fu T; Hsieh TH; Rando OJ; Eisenman RN; Shendure J; McKnight JN; Tsukiyama T
    Mol Cell; 2019 Feb; 73(3):533-546.e4. PubMed ID: 30595435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-step regulation of centromere distribution by condensin II and the nuclear envelope proteins.
    Sakamoto T; Sakamoto Y; Grob S; Slane D; Yamashita T; Ito N; Oko Y; Sugiyama T; Higaki T; Hasezawa S; Tanaka M; Matsui A; Seki M; Suzuki T; Grossniklaus U; Matsunaga S
    Nat Plants; 2022 Aug; 8(8):940-953. PubMed ID: 35915144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional analysis after rapid degradation of condensins and 3D-EM reveals chromatin volume is uncoupled from chromosome architecture in mitosis.
    Samejima K; Booth DG; Ogawa H; Paulson JR; Xie L; Watson CA; Platani M; Kanemaki MT; Earnshaw WC
    J Cell Sci; 2018 Feb; 131(4):. PubMed ID: 29361541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Condensin I binds chromatin early in prophase and displays a highly dynamic association with Drosophila mitotic chromosomes.
    Oliveira RA; Heidmann S; Sunkel CE
    Chromosoma; 2007 Jun; 116(3):259-74. PubMed ID: 17318635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fission yeast condensin contributes to interphase chromatin organization and prevents transcription-coupled DNA damage.
    Kakui Y; Barrington C; Barry DJ; Gerguri T; Fu X; Bates PA; Khatri BS; Uhlmann F
    Genome Biol; 2020 Nov; 21(1):272. PubMed ID: 33153481
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cancer-associated mutations in the condensin II subunit CAPH2 cause genomic instability through telomere dysfunction and anaphase chromosome bridges.
    Weyburne E; Bosco G
    J Cell Physiol; 2021 May; 236(5):3579-3598. PubMed ID: 33078399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissecting DNA Compaction by the Bacterial Condensin MukB.
    Kumar R; Bahng S; Marians KJ
    Methods Mol Biol; 2019; 2004():169-180. PubMed ID: 31147917
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interplay of the nuclear envelope with chromatin in physiology and pathology.
    Burla R; La Torre M; Maccaroni K; Verni F; Giunta S; Saggio I
    Nucleus; 2020 Dec; 11(1):205-218. PubMed ID: 32835589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diverse mitotic and interphase functions of condensins in Drosophila.
    Cobbe N; Savvidou E; Heck MM
    Genetics; 2006 Feb; 172(2):991-1008. PubMed ID: 16272408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Condensin action and compaction.
    Paul MR; Hochwagen A; Ercan S
    Curr Genet; 2019 Apr; 65(2):407-415. PubMed ID: 30361853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatiotemporal dynamics of condensins I and II: evolutionary insights from the primitive red alga Cyanidioschyzon merolae.
    Fujiwara T; Tanaka K; Kuroiwa T; Hirano T
    Mol Biol Cell; 2013 Aug; 24(16):2515-27. PubMed ID: 23783031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Condensin Depletion Causes Genome Decompaction Without Altering the Level of Global Gene Expression in
    Paul MR; Markowitz TE; Hochwagen A; Ercan S
    Genetics; 2018 Sep; 210(1):331-344. PubMed ID: 29970489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cdc48/VCP Promotes Chromosome Morphogenesis by Releasing Condensin from Self-Entrapment in Chromatin.
    Thattikota Y; Tollis S; Palou R; Vinet J; Tyers M; D'Amours D
    Mol Cell; 2018 Feb; 69(4):664-676.e5. PubMed ID: 29452641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Dynamic Nature of the Nuclear Envelope.
    De Magistris P; Antonin W
    Curr Biol; 2018 Apr; 28(8):R487-R497. PubMed ID: 29689232
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα.
    Samejima K; Samejima I; Vagnarelli P; Ogawa H; Vargiu G; Kelly DA; de Lima Alves F; Kerr A; Green LC; Hudson DF; Ohta S; Cooke CA; Farr CJ; Rappsilber J; Earnshaw WC
    J Cell Biol; 2012 Nov; 199(5):755-70. PubMed ID: 23166350
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Linker histone H1.8 inhibits chromatin binding of condensins and DNA topoisomerase II to tune chromosome length and individualization.
    Choppakatla P; Dekker B; Cutts EE; Vannini A; Dekker J; Funabiki H
    Elife; 2021 Aug; 10():. PubMed ID: 34406118
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Statistical mechanics of chromosomes: in vivo and in silico approaches reveal high-level organization and structure arise exclusively through mechanical feedback between loop extruders and chromatin substrate properties.
    He Y; Lawrimore J; Cook D; Van Gorder EE; De Larimat SC; Adalsteinsson D; Forest MG; Bloom K
    Nucleic Acids Res; 2020 Nov; 48(20):11284-11303. PubMed ID: 33080019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Condensin: crafting the chromosome landscape.
    Piazza I; Haering CH; Rutkowska A
    Chromosoma; 2013 Jun; 122(3):175-90. PubMed ID: 23546018
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metaphase chromosome structure is dynamically maintained by condensin I-directed DNA (de)catenation.
    Piskadlo E; Tavares A; Oliveira RA
    Elife; 2017 May; 6():. PubMed ID: 28477406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Meiotic chromosome structure and function in plants.
    Mainiero S; Pawlowski WP
    Cytogenet Genome Res; 2014; 143(1-3):6-17. PubMed ID: 25096046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.