These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25553072)

  • 1. Can sexual selection theory inform genetic management of captive populations? A review.
    Chargé R; Teplitsky C; Sorci G; Low M
    Evol Appl; 2014 Nov; 7(9):1120-33. PubMed ID: 25553072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering genetic mate choice: Not so simple in group-housed conservation breeding programs.
    Farquharson KA; Hogg CJ; Belov K; Grueber CE
    Evol Appl; 2020 Oct; 13(9):2179-2189. PubMed ID: 33005217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic quality and sexual selection: an integrated framework for good genes and compatible genes.
    Neff BD; Pitcher TE
    Mol Ecol; 2005 Jan; 14(1):19-38. PubMed ID: 15643948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How well can captive breeding programs conserve biodiversity? A review of salmonids.
    Fraser DJ
    Evol Appl; 2008 Nov; 1(4):535-86. PubMed ID: 25567798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel holistic framework for genetic-based captive-breeding and reintroduction programs.
    Attard CR; Möller LM; Sasaki M; Hammer MP; Bice CM; Brauer CJ; Carvalho DC; Harris JO; Beheregaray LB
    Conserv Biol; 2016 Oct; 30(5):1060-9. PubMed ID: 26892747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inbreeding and selection shape genomic diversity in captive populations: Implications for the conservation of endangered species.
    Willoughby JR; Ivy JA; Lacy RC; Doyle JM; DeWoody JA
    PLoS One; 2017; 12(4):e0175996. PubMed ID: 28423000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pedigree analysis reveals a generational decline in reproductive success of captive Tasmanian devil (Sarcophilus harrisii): implications for captive management of threatened species.
    Farquharson KA; Hogg CJ; Grueber CE
    J Hered; 2017 Jul; 108(5):488-495. PubMed ID: 28379457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impacts of inbreeding, drift and selection on genetic diversity in captive breeding populations.
    Willoughby JR; Fernandez NB; Lamb MC; Ivy JA; Lacy RC; DeWoody JA
    Mol Ecol; 2015 Jan; 24(1):98-110. PubMed ID: 25443807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assortative mating among animals of captive and wild origin following experimental conservation releases.
    Slade B; Parrott ML; Paproth A; Magrath MJ; Gillespie GR; Jessop TS
    Biol Lett; 2014 Nov; 10(11):20140656. PubMed ID: 25411380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The guppy as a conservation model: implications of parasitism and inbreeding for reintroduction success.
    van Oosterhout C; Smith AM; Hänfling B; Ramnarine IW; Mohammed RS; Cable J
    Conserv Biol; 2007 Dec; 21(6):1573-83. PubMed ID: 18173481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic adaptation to captivity in species conservation programs.
    Frankham R
    Mol Ecol; 2008 Jan; 17(1):325-33. PubMed ID: 18173504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic guidelines for captive breeding and reintroductions of the endangered Black-fronted Piping Guan, Aburria jacutinga (galliformes, cracidae), an Atlantic Forest endemic.
    Oliveira PR; Costa MC; Silveira LF; Francisco MR
    Zoo Biol; 2016 Jul; 35(4):313-8. PubMed ID: 27232628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale genetic survey provides insights into the captive management and reintroduction of giant pandas.
    Shan L; Hu Y; Zhu L; Yan L; Wang C; Li D; Jin X; Zhang C; Wei F
    Mol Biol Evol; 2014 Oct; 31(10):2663-71. PubMed ID: 25015646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative genetics in conservation biology.
    Frankham R
    Genet Res; 1999 Dec; 74(3):237-44. PubMed ID: 10689801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the sustainability of ex situ populations with mate choice.
    Martin-Wintle MS; Wintle NJP; Díez-León M; Swaisgood RR; Asa CS
    Zoo Biol; 2019 Jan; 38(1):119-132. PubMed ID: 30474268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term demographic and genetic effects of releasing captive-born individuals into the wild.
    Willoughby JR; Christie MR
    Conserv Biol; 2019 Apr; 33(2):377-388. PubMed ID: 30168872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the performance of captive breeding techniques for conservation hatcheries: a case study of the delta smelt captive breeding program.
    Fisch KM; Ivy JA; Burton RS; May B
    J Hered; 2013; 104(1):92-104. PubMed ID: 23125405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disentangling the mechanisms of mate choice in a captive koala population.
    Brandies PA; Grueber CE; Ivy JA; Hogg CJ; Belov K
    PeerJ; 2018; 6():e5438. PubMed ID: 30155356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The phenotypic costs of captivity.
    Crates R; Stojanovic D; Heinsohn R
    Biol Rev Camb Philos Soc; 2023 Apr; 98(2):434-449. PubMed ID: 36341701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Captive breeding, reintroduction, and the conservation of amphibians.
    Griffiths RA; Pavajeau L
    Conserv Biol; 2008 Aug; 22(4):852-61. PubMed ID: 18616746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.