These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25553359)

  • 21. Involvement of brainstem serotonergic interneurons in the development of a vertebrate spinal locomotor circuit.
    Sillar KT; Woolston AM; Wedderburn JF
    Proc Biol Sci; 1995 Jan; 259(1354):65-70. PubMed ID: 7700876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Serotonergic Modulation of Locomotor Activity From Basal Vertebrates to Mammals.
    Flaive A; Fougère M; van der Zouwen CI; Ryczko D
    Front Neural Circuits; 2020; 14():590299. PubMed ID: 33224027
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Locomotor pattern in the adult zebrafish spinal cord in vitro.
    Gabriel JP; Mahmood R; Walter AM; Kyriakatos A; Hauptmann G; Calabrese RL; El Manira A
    J Neurophysiol; 2008 Jan; 99(1):37-48. PubMed ID: 17977928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Serotonergic control of phrenic motoneuronal activity at the level of the spinal cord of the rabbit.
    Schmid K; Böhmer G; Merkelbach S
    Neurosci Lett; 1990 Aug; 116(1-2):204-9. PubMed ID: 2259450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distribution of 5-hydroxytryptamine-immunoreactive boutons on alpha-motoneurons in the lumbar spinal cord of adult cats.
    Alvarez FJ; Pearson JC; Harrington D; Dewey D; Torbeck L; Fyffe RE
    J Comp Neurol; 1998 Mar; 393(1):69-83. PubMed ID: 9520102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators.
    Juvin L; Simmers J; Morin D
    J Physiol; 2007 Aug; 583(Pt 1):115-28. PubMed ID: 17569737
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional topography of brain serotonergic pathways in the rat.
    Hillegaart V
    Acta Physiol Scand Suppl; 1991; 598():1-54. PubMed ID: 1832809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Locomotor-related activity of GABAergic interneurons localized in the ventrolateral region in the isolated spinal cord of neonatal mice.
    Nishimaru H; Sakagami H; Kakizaki M; Yanagawa Y
    J Neurophysiol; 2011 Oct; 106(4):1782-92. PubMed ID: 21734105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of the serotonergic system in motor control.
    Kawashima T
    Neurosci Res; 2018 Apr; 129():32-39. PubMed ID: 28774814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction between developing spinal locomotor networks in the neonatal mouse.
    Gordon IT; Dunbar MJ; Vanneste KJ; Whelan PJ
    J Neurophysiol; 2008 Jul; 100(1):117-28. PubMed ID: 18436636
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Descending command systems for the initiation of locomotion in mammals.
    Jordan LM; Liu J; Hedlund PB; Akay T; Pearson KG
    Brain Res Rev; 2008 Jan; 57(1):183-91. PubMed ID: 17928060
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Serotonin differentially modulates the intrinsic properties of spinal motoneurons from the adult turtle.
    Perrier JF; Cotel F
    J Physiol; 2008 Mar; 586(5):1233-8. PubMed ID: 18096602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Serotonin refines the locomotor-related alternations in the in vitro neonatal rat spinal cord.
    Pearlstein E; Ben Mabrouk F; Pflieger JF; Vinay L
    Eur J Neurosci; 2005 Mar; 21(5):1338-46. PubMed ID: 15813943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Separate microcircuit modules of distinct v2a interneurons and motoneurons control the speed of locomotion.
    Ampatzis K; Song J; Ausborn J; El Manira A
    Neuron; 2014 Aug; 83(4):934-43. PubMed ID: 25123308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Serotonergic modulation of synaptic transmission and action potential firing in frog motoneurons.
    Ovsepian SV; Vesselkin NP
    Brain Res; 2006 Aug; 1102(1):71-7. PubMed ID: 16806121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spinal 5-HT7 receptors are critical for alternating activity during locomotion: in vitro neonatal and in vivo adult studies using 5-HT7 receptor knockout mice.
    Liu J; Akay T; Hedlund PB; Pearson KG; Jordan LM
    J Neurophysiol; 2009 Jul; 102(1):337-48. PubMed ID: 19458153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spinal cholinergic interneurons differentially control motoneuron excitability and alter the locomotor network operational range.
    Bertuzzi M; Ampatzis K
    Sci Rep; 2018 Jan; 8(1):1988. PubMed ID: 29386582
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulation of Rhythmic Activity in Mammalian Spinal Networks Is Dependent on Excitability State.
    Sharples SA; Whelan PJ
    eNeuro; 2017; 4(1):. PubMed ID: 28144626
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Postural modifications and neuronal excitability changes induced by a short-term serotonin depletion during neonatal development in the rat.
    Pflieger JF; Clarac F; Vinay L
    J Neurosci; 2002 Jun; 22(12):5108-17. PubMed ID: 12077206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors.
    Murray KC; Nakae A; Stephens MJ; Rank M; D'Amico J; Harvey PJ; Li X; Harris RL; Ballou EW; Anelli R; Heckman CJ; Mashimo T; Vavrek R; Sanelli L; Gorassini MA; Bennett DJ; Fouad K
    Nat Med; 2010 Jun; 16(6):694-700. PubMed ID: 20512126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.