These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 25553463)

  • 1. Functions and characteristics of PINK1 and Parkin in cancer.
    Matsuda S; Nakanishi A; Minami A; Wada Y; Kitagishi Y
    Front Biosci (Landmark Ed); 2015 Jan; 20(3):491-501. PubMed ID: 25553463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-degron-mediated degradation and regulation of mitochondrial PINK1 kinase.
    Eldeeb MA; Ragheb MA
    Curr Genet; 2020 Aug; 66(4):693-701. PubMed ID: 32157382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy.
    Pryde KR; Smith HL; Chau KY; Schapira AH
    J Cell Biol; 2016 Apr; 213(2):163-71. PubMed ID: 27091447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitophagy: the latest problem for Parkinson's disease.
    Vives-Bauza C; Przedborski S
    Trends Mol Med; 2011 Mar; 17(3):158-65. PubMed ID: 21146459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PINK1, Parkin, and Mitochondrial Quality Control: What can we Learn about Parkinson's Disease Pathobiology?
    Truban D; Hou X; Caulfield TR; Fiesel FC; Springer W
    J Parkinsons Dis; 2017; 7(1):13-29. PubMed ID: 27911343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons.
    Rakovic A; Shurkewitsch K; Seibler P; Grünewald A; Zanon A; Hagenah J; Krainc D; Klein C
    J Biol Chem; 2013 Jan; 288(4):2223-37. PubMed ID: 23212910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations.
    Geisler S; Holmström KM; Treis A; Skujat D; Weber SS; Fiesel FC; Kahle PJ; Springer W
    Autophagy; 2010 Oct; 6(7):871-8. PubMed ID: 20798600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control.
    Narendra DP; Youle RJ
    Antioxid Redox Signal; 2011 May; 14(10):1929-38. PubMed ID: 21194381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation.
    Quinn PMJ; Moreira PI; Ambrósio AF; Alves CH
    Acta Neuropathol Commun; 2020 Nov; 8(1):189. PubMed ID: 33168089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson's disease.
    Koentjoro B; Park JS; Sue CM
    Sci Rep; 2017 Mar; 7():44373. PubMed ID: 28281653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Function and characteristics of PINK1 in mitochondria.
    Matsuda S; Kitagishi Y; Kobayashi M
    Oxid Med Cell Longev; 2013; 2013():601587. PubMed ID: 23533695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond.
    Bingol B; Sheng M
    Free Radic Biol Med; 2016 Nov; 100():210-222. PubMed ID: 27094585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The endoplasmic reticulum/mitochondria interface: a subcellular platform for the orchestration of the functions of the PINK1-Parkin pathway?
    Erpapazoglou Z; Corti O
    Biochem Soc Trans; 2015 Apr; 43(2):297-301. PubMed ID: 25849933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The PINK1-Parkin axis: An Overview.
    Tanaka K
    Neurosci Res; 2020 Oct; 159():9-15. PubMed ID: 31982458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunocytochemical Monitoring of PINK1/Parkin-Mediated Mitophagy in Cultured Cells.
    Fujimaki M; Saiki S; Sasazawa Y; Ishikawa KI; Imamichi Y; Sumiyoshi K; Hattori N
    Methods Mol Biol; 2018; 1759():19-27. PubMed ID: 28361483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of glucose metabolism and ATP in maintaining PINK1 levels during Parkin-mediated mitochondrial damage responses.
    Lee S; Zhang C; Liu X
    J Biol Chem; 2015 Jan; 290(2):904-17. PubMed ID: 25404737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parkin and PINK1 functions in oxidative stress and neurodegeneration.
    Barodia SK; Creed RB; Goldberg MS
    Brain Res Bull; 2017 Jul; 133():51-59. PubMed ID: 28017782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parkin recruitment to impaired mitochondria for nonselective ubiquitylation is facilitated by MITOL.
    Koyano F; Yamano K; Kosako H; Tanaka K; Matsuda N
    J Biol Chem; 2019 Jun; 294(26):10300-10314. PubMed ID: 31110043
    [No Abstract]   [Full Text] [Related]  

  • 19. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy.
    Vives-Bauza C; Zhou C; Huang Y; Cui M; de Vries RL; Kim J; May J; Tocilescu MA; Liu W; Ko HS; Magrané J; Moore DJ; Dawson VL; Grailhe R; Dawson TM; Li C; Tieu K; Przedborski S
    Proc Natl Acad Sci U S A; 2010 Jan; 107(1):378-83. PubMed ID: 19966284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement and interplay of Parkin, PINK1, and DJ1 in neurodegenerative and neuroinflammatory disorders.
    Wilhelmus MM; Nijland PG; Drukarch B; de Vries HE; van Horssen J
    Free Radic Biol Med; 2012 Aug; 53(4):983-92. PubMed ID: 22687462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.