These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 25553556)
1. Local anisotropic mechanical properties of human carotid atherosclerotic plaques - characterisation by micro-indentation and inverse finite element analysis. Chai CK; Akyildiz AC; Speelman L; Gijsen FJ; Oomens CW; van Sambeek MR; van der Lugt A; Baaijens FP J Mech Behav Biomed Mater; 2015 Mar; 43():59-68. PubMed ID: 25553556 [TBL] [Abstract][Full Text] [Related]
2. Local axial compressive mechanical properties of human carotid atherosclerotic plaques-characterisation by indentation test and inverse finite element analysis. Chai CK; Akyildiz AC; Speelman L; Gijsen FJ; Oomens CW; van Sambeek MR; van der Lugt A; Baaijens FP J Biomech; 2013 Jun; 46(10):1759-66. PubMed ID: 23664315 [TBL] [Abstract][Full Text] [Related]
3. Compressive mechanical properties of atherosclerotic plaques--indentation test to characterise the local anisotropic behaviour. Chai CK; Speelman L; Oomens CW; Baaijens FP J Biomech; 2014 Mar; 47(4):784-92. PubMed ID: 24480703 [TBL] [Abstract][Full Text] [Related]
4. Identification of carotid plaque tissue properties using an experimental-numerical approach. Heiland VM; Forsell C; Roy J; Hedin U; Gasser TC J Mech Behav Biomed Mater; 2013 Nov; 27():226-38. PubMed ID: 23790614 [TBL] [Abstract][Full Text] [Related]
5. Impact of plaque haemorrhage and its age on structural stresses in atherosclerotic plaques of patients with carotid artery disease: an MR imaging-based finite element simulation study. Sadat U; Teng Z; Young VE; Zhu C; Tang TY; Graves MJ; Gillard JH Int J Cardiovasc Imaging; 2011 Mar; 27(3):397-402. PubMed ID: 20700655 [TBL] [Abstract][Full Text] [Related]
6. An investigation into the critical role of fibre orientation in the ultimate tensile strength and stiffness of human carotid plaque caps. Johnston RD; Gaul RT; Lally C Acta Biomater; 2021 Apr; 124():291-300. PubMed ID: 33571712 [TBL] [Abstract][Full Text] [Related]
7. Local characterization of collagen architecture and mechanical failure properties of fibrous plaque tissue of atherosclerotic human carotid arteries. Torun SG; Munoz PM; Crielaard H; Verhagen HJM; Kremers GJ; van der Steen AFW; Akyildiz AC Acta Biomater; 2023 Jul; 164():293-302. PubMed ID: 37086826 [TBL] [Abstract][Full Text] [Related]
8. Finite element analysis of mechanics of neovessels with intraplaque hemorrhage in carotid atherosclerosis. Lu J; Duan W; Qiao A Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S3. PubMed ID: 25603398 [TBL] [Abstract][Full Text] [Related]
9. Consideration of stiffness of wall layers is decisive for patient-specific analysis of carotid artery with atheroma. Lisický O; Malá A; Bednařík Z; Novotný T; Burša J PLoS One; 2020; 15(9):e0239447. PubMed ID: 32991605 [TBL] [Abstract][Full Text] [Related]
10. A Framework for Local Mechanical Characterization of Atherosclerotic Plaques: Combination of Ultrasound Displacement Imaging and Inverse Finite Element Analysis. Akyildiz AC; Hansen HH; Nieuwstadt HA; Speelman L; De Korte CL; van der Steen AF; Gijsen FJ Ann Biomed Eng; 2016 Apr; 44(4):968-79. PubMed ID: 26399991 [TBL] [Abstract][Full Text] [Related]
11. Experimental measurement of the mechanical properties of carotid atherothrombotic plaque fibrous cap. Barrett SR; Sutcliffe MP; Howarth S; Li ZY; Gillard JH J Biomech; 2009 Aug; 42(11):1650-5. PubMed ID: 19464014 [TBL] [Abstract][Full Text] [Related]
12. Cap buckling as a potential mechanism of atherosclerotic plaque vulnerability. Abdelali M; Reiter S; Mongrain R; Bertrand M; L'Allier PL; Kritikou EA; Tardif JC J Mech Behav Biomed Mater; 2014 Apr; 32():210-224. PubMed ID: 24491969 [TBL] [Abstract][Full Text] [Related]
13. The effects of plaque morphology and material properties on peak cap stress in human coronary arteries. Akyildiz AC; Speelman L; Nieuwstadt HA; van Brummelen H; Virmani R; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ Comput Methods Biomech Biomed Engin; 2016; 19(7):771-9. PubMed ID: 26237279 [TBL] [Abstract][Full Text] [Related]
14. Anisotropic Material Characterization of Human Cervix Tissue Based on Indentation and Inverse Finite Element Analysis. Shi L; Yao W; Gan Y; Zhao LY; Eugene McKee W; Vink J; Wapner RJ; Hendon CP; Myers K J Biomech Eng; 2019 Sep; 141(9):0910171-09101713. PubMed ID: 31374123 [TBL] [Abstract][Full Text] [Related]
15. Multicomponent material property characterization of atherosclerotic human carotid arteries through a Bayesian Optimization based inverse finite element approach. Guvenir Torun S; Torun HM; Hansen HHG; de Korte CL; van der Steen AFW; Gijsen FJH; Akyildiz AC J Mech Behav Biomed Mater; 2022 Feb; 126():104996. PubMed ID: 34864574 [TBL] [Abstract][Full Text] [Related]
16. Characterization of fracture behavior of human atherosclerotic fibrous caps using a miniature single edge notched tensile test. Davis LA; Stewart SE; Carsten CG; Snyder BA; Sutton MA; Lessner SM Acta Biomater; 2016 Oct; 43():101-111. PubMed ID: 27431877 [TBL] [Abstract][Full Text] [Related]
17. Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review. Holzapfel GA; Mulvihill JJ; Cunnane EM; Walsh MT J Biomech; 2014 Mar; 47(4):859-69. PubMed ID: 24491496 [TBL] [Abstract][Full Text] [Related]
18. A hybrid approach to determining cornea mechanical properties in vivo using a combination of nano-indentation and inverse finite element analysis. Abyaneh MH; Wildman RD; Ashcroft IA; Ruiz PD J Mech Behav Biomed Mater; 2013 Nov; 27():239-48. PubMed ID: 23816808 [TBL] [Abstract][Full Text] [Related]