These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 25553556)
41. Velocity vector imaging of longitudinal mechanical properties of upstream and downstream shoulders and fibrous cap tops of human carotid atherosclerotic plaque. Huang XZ; Wang ZY; Dai XH; Yun-Zhang ; Zhang M Echocardiography; 2013 Feb; 30(2):211-8. PubMed ID: 23095047 [TBL] [Abstract][Full Text] [Related]
42. Moderate thickness of lipid core in shoulder region of atherosclerotic plaque determines vulnerable plaque A parametric study. Polzer S; Polišenská A; Novák K; Burša J Med Eng Phys; 2019 Jul; 69():140-146. PubMed ID: 31160196 [TBL] [Abstract][Full Text] [Related]
43. Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma. Antonacci G; Pedrigi RM; Kondiboyina A; Mehta VV; de Silva R; Paterson C; Krams R; Török P J R Soc Interface; 2015 Nov; 12(112):. PubMed ID: 26559685 [TBL] [Abstract][Full Text] [Related]
44. Uniaxial and biaxial mechanical properties of porcine linea alba. Cooney GM; Moerman KM; Takaza M; Winter DC; Simms CK J Mech Behav Biomed Mater; 2015 Jan; 41():68-82. PubMed ID: 25460404 [TBL] [Abstract][Full Text] [Related]
45. Inelasticity of human carotid atherosclerotic plaque. Maher E; Creane A; Sultan S; Hynes N; Lally C; Kelly DJ Ann Biomed Eng; 2011 Sep; 39(9):2445-55. PubMed ID: 21618044 [TBL] [Abstract][Full Text] [Related]
47. Transversely isotropic material characterization of the human anterior longitudinal ligament. Hortin M; Graham S; Boatwright K; Hyoung P; Bowden A J Mech Behav Biomed Mater; 2015 May; 45():75-82. PubMed ID: 25688029 [TBL] [Abstract][Full Text] [Related]
48. An indentation-based approach to determine the elastic constants of soft anisotropic tissues. Moghaddam AO; Wei J; Kim J; Dunn AC; Wagoner Johnson AJ J Mech Behav Biomed Mater; 2020 Mar; 103():103539. PubMed ID: 31783285 [TBL] [Abstract][Full Text] [Related]
49. Initial stress in biomechanical models of atherosclerotic plaques. Speelman L; Akyildiz AC; den Adel B; Wentzel JJ; van der Steen AF; Virmani R; van der Weerd L; Jukema JW; Poelmann RE; van Brummelen EH; Gijsen FJ J Biomech; 2011 Sep; 44(13):2376-82. PubMed ID: 21782179 [TBL] [Abstract][Full Text] [Related]
50. A methodology to analyze changes in lipid core and calcification onto fibrous cap vulnerability: the human atherosclerotic carotid bifurcation as an illustratory example. Kiousis DE; Rubinigg SF; Auer M; Holzapfel GA J Biomech Eng; 2009 Dec; 131(12):121002. PubMed ID: 20524725 [TBL] [Abstract][Full Text] [Related]
51. Characterising human atherosclerotic carotid plaque tissue composition and morphology using combined spectroscopic and imaging modalities. Barrett HE; Mulvihill JJ; Cunnane EM; Walsh MT Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S5. PubMed ID: 25602176 [TBL] [Abstract][Full Text] [Related]
52. Vulnerability analysis on the interaction between Asymmetric stent and arterial layer. Syaifudin A; Ariatedja JB; Kaelani Y; Takeda R; Sasaki K Biomed Mater Eng; 2019; 30(3):309-322. PubMed ID: 31127751 [TBL] [Abstract][Full Text] [Related]
53. Insights into reference point indentation involving human cortical bone: sensitivity to tissue anisotropy and mechanical behavior. Granke M; Coulmier A; Uppuganti S; Gaddy JA; Does MD; Nyman JS J Mech Behav Biomed Mater; 2014 Sep; 37():174-85. PubMed ID: 24929851 [TBL] [Abstract][Full Text] [Related]
54. A robust anisotropic hyperelastic formulation for the modelling of soft tissue. Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546 [TBL] [Abstract][Full Text] [Related]
55. Numerical modelling of fracture in human arteries. Ferrara A; Pandolfi A Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):553-67. PubMed ID: 19230149 [TBL] [Abstract][Full Text] [Related]
56. Mechanical, biological and structural characterization of in vitro ruptured human carotid plaque tissue. Mulvihill JJ; Cunnane EM; McHugh SM; Kavanagh EG; Walsh SR; Walsh MT Acta Biomater; 2013 Nov; 9(11):9027-35. PubMed ID: 23871944 [TBL] [Abstract][Full Text] [Related]
57. Arterial luminal curvature and fibrous-cap thickness affect critical stress conditions within atherosclerotic plaque: an in vivo MRI-based 2D finite-element study. Teng Z; Sadat U; Li Z; Huang X; Zhu C; Young VE; Graves MJ; Gillard JH Ann Biomed Eng; 2010 Oct; 38(10):3096-101. PubMed ID: 20499180 [TBL] [Abstract][Full Text] [Related]
58. Microstructural and mechanical insight into atherosclerotic plaques: an ex vivo DTI study to better assess plaque vulnerability. Tornifoglio B; Johnston RD; Stone AJ; Kerskens C; Lally C Biomech Model Mechanobiol; 2023 Oct; 22(5):1515-1530. PubMed ID: 36652053 [TBL] [Abstract][Full Text] [Related]
59. Study of indentation of a sample equine bone using finite element simulation and single cycle reference point indentation. Hoffseth K; Randall C; Hansma P; Yang HT J Mech Behav Biomed Mater; 2015 Feb; 42():282-91. PubMed ID: 25528690 [TBL] [Abstract][Full Text] [Related]
60. Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. Li ZY; Howarth S; Trivedi RA; U-King-Im JM; Graves MJ; Brown A; Wang L; Gillard JH J Biomech; 2006; 39(14):2611-22. PubMed ID: 16256124 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]