These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 25553613)

  • 1. A ratiometric colorimetric detection of the folate receptor based on terminal protection of small-molecule-linked DNA.
    Zhu Y; Wang G; Sha L; Qiu Y; Jiang H; Zhang X
    Analyst; 2015 Feb; 140(4):1260-4. PubMed ID: 25553613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terminal protection of small molecule-linked ssDNA for label-free and sensitive fluorescent detection of folate receptor.
    Xu Y; Jiang B; Xie J; Xiang Y; Yuan R; Chai Y
    Talanta; 2014 Oct; 128():237-41. PubMed ID: 25059154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanoparticle-based exonuclease III signal amplification for highly sensitive colorimetric detection of folate receptor.
    Yang X; Gao Z
    Nanoscale; 2014 Mar; 6(6):3055-8. PubMed ID: 24500117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization free electrochemical biosensor for folate receptor in cancer cells based on terminal protection.
    Ni J; Wang Q; Yang W; Zhao M; Zhang Y; Guo L; Qiu B; Lin Z; Yang HH
    Biosens Bioelectron; 2016 Dec; 86():496-501. PubMed ID: 27442079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical detection of protein based on hybridization chain reaction-assisted formation of copper nanoparticles.
    Zhao J; Hu S; Cao Y; Zhang B; Li G
    Biosens Bioelectron; 2015 Apr; 66():327-31. PubMed ID: 25437371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive fluorescence biosensor for folate receptor based on terminal protection of small-molecule-linked DNA.
    Wei X; Lin W; Ma N; Luo F; Lin Z; Guo L; Qiu B; Chen G
    Chem Commun (Camb); 2012 Jun; 48(49):6184-6. PubMed ID: 22590712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanocluster-based fluorescence biosensor for targeted imaging in cancer cells and ratiometric determination of intracellular pH.
    Ding C; Tian Y
    Biosens Bioelectron; 2015 Mar; 65():183-90. PubMed ID: 25461156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A folate receptor electrochemical sensor based on terminal protection and supersandwich DNAzyme amplification.
    Wang G; He X; Wang L; Zhang X
    Biosens Bioelectron; 2013 Apr; 42():337-41. PubMed ID: 23208108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification.
    Liu P; Yang X; Sun S; Wang Q; Wang K; Huang J; Liu J; He L
    Anal Chem; 2013 Aug; 85(16):7689-95. PubMed ID: 23895103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Terminal protection of small-molecule-linked DNA for sensitive electrochemical detection of protein binding via selective carbon nanotube assembly.
    Wu Z; Zhen Z; Jiang JH; Shen GL; Yu RQ
    J Am Chem Soc; 2009 Sep; 131(34):12325-32. PubMed ID: 19655753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanoprobes-based resonance Rayleigh scattering assay platform: Sensitive cytosensing of breast cancer cells and facile monitoring of folate receptor expression.
    Cai HH; Pi J; Lin X; Li B; Li A; Yang PH; Cai J
    Biosens Bioelectron; 2015 Dec; 74():165-9. PubMed ID: 26141102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Synthesis of folate receptor-targeted nanoprobe for detection of cancer cells and its spectral analysis].
    Yao CP; Wang J; Yang Y; Dong YH; Xue Y; Mei JS; Zeng WH; Zhang ZX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 May; 33(5):1299-303. PubMed ID: 23905340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple colorimetric DNA detection by target-induced hybridization chain reaction for isothermal signal amplification.
    Ma C; Wang W; Mulchandani A; Shi C
    Anal Biochem; 2014 Jul; 457():19-23. PubMed ID: 24780220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free and dual-amplified detection of protein via small molecule-ligand linked DNA and a cooperative DNA machine.
    Li P; Wang L; Zhu J; Wu Y; Jiang W
    Biosens Bioelectron; 2015 Oct; 72():107-13. PubMed ID: 25966829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric assay of K-562 cells based on folic acid-conjugated porous bimetallic Pd@Au nanoparticles for point-of-care testing.
    Ge S; Liu F; Liu W; Yan M; Song X; Yu J
    Chem Commun (Camb); 2014 Jan; 50(4):475-7. PubMed ID: 24257545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive detection of transcription factors by isothermal exponential amplification-based colorimetric assay.
    Zhang Y; Hu J; Zhang CY
    Anal Chem; 2012 Nov; 84(21):9544-9. PubMed ID: 23050558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticle aggregation: Colorimetric detection of the interactions between avidin and biotin.
    Shi D; Sheng F; Zhang X; Wang G
    Talanta; 2018 Aug; 185():106-112. PubMed ID: 29759175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colorimetric sensor array for protein discrimination based on different DNA chain length-dependent gold nanoparticles aggregation.
    Wei X; Wang Y; Zhao Y; Chen Z
    Biosens Bioelectron; 2017 Nov; 97():332-337. PubMed ID: 28623815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer.
    Song KM; Cho M; Jo H; Min K; Jeon SH; Kim T; Han MS; Ku JK; Ban C
    Anal Biochem; 2011 Aug; 415(2):175-81. PubMed ID: 21530479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femtomolar DNA detection by parallel colorimetric darkfield microscopy of functionalized gold nanoparticles.
    Verdoold R; Gill R; Ungureanu F; Molenaar R; Kooyman RP
    Biosens Bioelectron; 2011 Sep; 27(1):77-81. PubMed ID: 21752628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.